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ABSTRACT
This paper describes the solution of National Taiwan Uni-

versity for track 2 of KDD Cup 2012. Track 2 of KDD Cup
2012 aims to predict the click-through rate of ads on Ten-
cent proprietary search engine. We exploit classification,
regression, ranking, and factorization models to utilize a va-
riety of different signatures captured from the dataset. We
then blend our individual models to boost the performance
through two stages, one on an internal validation set and
one on the external test set. Our solution achieves 0.8069
AUC on the public test set and 0.8089 AUC on the private
test set.

1 Introduction
Track 2 of KDD Cup 2012 is a competition for search

advertising. The task of the competition is to predict the
click-through rate (CTR) of ads in a web search engine given
its logs in the past. The dataset, which is provided by Ten-
cent, includes a training set, a test set and files for additional
information. The training set contains 155,750,158 instances
that are derived from log messages of search sessions, where
a search session refers to an interaction between an user
and the search engine. During each session, the user can
be impressed with multiple ads; then, the same ads under
the same setting (such as position) from multiple sessions
are aggregated to make an instance in the dataset. Each in-
stance can be viewed as a vector (#click, #impression, Dis-
playURL, AdID, AdvertiserID, Depth, Position, QueryID,
KeywordID, TitleID, DescriptionID, UserID), which means
that under a specific setting, the user (UserID) had been im-
pressed with the ad (AdID) for #impression times, and had
clicked #click times of those. In addition to the instances,
the dataset also contains token lists of query, keyword, title
and description, where a token is a word represented by its
hash value. The gender and segmented age information of
each user is also provided in the dataset.

The test set contains 20,297,594 instances and shares the
same format as the training set, except for the lack of #click
and #impression. The test set is generated with log mes-
sages that come from sessions latter than those of the train-
ing set. Detailed information about the dataset and KDD
Cup 2012 can be founded in [17].

The goal of the competition is to predict the click-through
rate (#click / #impression) for each instance in the test set.
The goodness of the predictions is evaluated by the area un-

der the ROC curve (AUC), which is equivalent to the prob-
ability that a random pair of a positive sample (clicked ad)
and a negative one (unclicked ad) is ranked correctly us-
ing the predicted click-through rate. That is, an equivalent
way of maximizing the AUC is to divide each instance into
(#click) of positive samples and (#impression-#click) neg-
ative samples, and then minimize the pairwise ranking loss
of those samples using the predicted click-through rate [10].

During the competition, teams are allowed to upload the
predictions on the test set. The AUC calculated on a fixed
42% of the test set (public test set) is shown on the leader-
board; the remaining 58% of the test set (private test set)
is used to determine the final standings. Teams are allowed
to select up to 5 submissions to be evaluated on the private
test set before the end of the competition.

The paper describes the system proposed by National Tai-
wan University team. According to the leaderboard online,1

the system reaches the best performance on both of the pub-
lic and the private sets.

The paper is organized as follows. Section 2 describes the
framework of our system. Section 3 discusses all individ-
ual models, which tackle the task of the competition from
several different perspectives. Section 4 and Section 5 then
introduce how we combine the individual models using the
validation set and the test set, respectively, to form the final
system. Finally, we conclude in Section 6.

2 Framework
We first provide an overview of our proposed system. Then,

we discuss a key step in building the system: generating the
internal validation set. The set not only is used for param-
eter and model selection, but also plays an important role
in the blending stage. Finally, we show our efforts in an-
other key step: generating meaningful features for training
the individual models.

2.1 System Overview
The proposed system can be divided into three stages:

generating individual models, blending with the validation
set, and ensemble learning with the test set. In the first
stage, we apply several different approaches to capture dif-
ferent concepts and learn a diverse set of models. Diver-
sity here represents different perspective for modeling the
task. Our experience in earlier KDD Cups [6, 15] shows

1Team “Catch up” on http://www.kddcup2012.org/c/
kddcup2012-track2/leaderboard



that enhancing the diversity could boost the performance
when the models are appropriately aggregated — that is,
the folklore rule of two heads being better than one. The
aggregation happens during the second and the third stages
to form the final solution. In the second stage, we apply
non-linear blending methods to combine the results from
the first stage to improve the prediction performance and
to further increase the diversity of our model set. We also
conduct re-blending, which feeds the aggregated models into
the non-linear blending methods again. Such a validation-
set blending step is known to be crucial in many recent data
mining competitions [23, 6, 15]. Then, in the final stage, we
pick predictions from the second stage, along with another
re-blending loop, based on the leaderboard results to gen-
erate the final solution. The final solution thus aggregates
all our models and utilizes the information from the leader-
board. Figure 1 illustrates the flow of the system. This
3-stage framework has also been exploited successfully for
the Netflix Prize [23] and KDD Cup 2011 [6].

Figure 1: Overview of Proposed System

2.2 Validation Set
The validation set is important in data mining systems to

select and combine models [23, 6, 15, 14]. In this compe-
tition, the training set comes from earlier time period than
that of the test set. Thus, we naturally want to use the
later data in the training set for validation. However, the
training and test sets do not contain time information, and
it is non-trivial to directly obtain such a validation set.

We take a simple alternative for generating the validation
set. We randomly sample 1/11 of the training instances as
the validation instances.2 Table 1 shows the data statistics
of the validation and the sub-training sets.

Table 1: Statistics of the sub-training and validation sets

#instance #click #impression
sub-training 136,041,984 7,479,132 214,556,140
validation 13,597,121 738,501 21,026,739

We have looked at other different methods to generate
the validation set, but none of them appears more robust
then the simple instance-based sampling. For example, we
have tried impression-based sampling; that is, we randomly
extract 1/11 of the impressions to make the validation set.

2In the early stage of the competition, the official site showed
that the training and test sets respectively cover the logs
from the first 50 days and the last 5 days in all 55 days. This
is why we extract 1/11 training instances to the validation
set. The remain 10/11 is called the sub-training set.

The generated validation set contains 7,722,457 users, and
7,182,467 of them are also in the sub-training set. How-
ever, in the test set, there are only 3,263,681 users, and only
1,379,733 of them are in the training set. The statistics show
a drastic difference between such a validation set (with re-
spect to the sub-training set) and the test set (with respect
to the whole training set). In particular, such a validation
set does not contain enough cold-start users. Although the
simple instance-based sampling also suffer from the same
problem (possibly because of the lack of time information),
but the ratio of cold-start users appears closer to the statis-
tics of the training and test sets.

The validation set also plays an important role in our 3-
stage framework. In the first stage, we train all our individ-
ual models twice. We first train a model on the sub-training
set (sub-model) and predict on the validation set. Then, we
retrain a model on the full training set (full model) with the
same setting as the model trained on sub-training and make
predictions on the test set. Then, in the second stage, we
take the predictions from the sub-models and train with the
validation set to aggregate the full models.

2.3 General Features
Before introducing each individual model, we first describe

features used by our individual models here. Each of our
individual models may use different set of features. The
detailed list of our feature set is provided in Appendix A.

2.3.1 Categorical Features
The dataset contains information on UserID, AdID, user’s

gender, ad’s position, etc. We can take those fields as cat-
egorical features directly. We use AdID, QueryID, Keywor-
dID, UserID, and ad’s position as categorical features in our
models.

2.3.2 Basic Sparse Features
As mentioned above, we are provided with a set of categor-

ical features such as UserID, AdID, user’s gender, ad’s posi-
tion. We have also tried expanding those categorical features
into binary features. For example, there are 22,023,547 dif-
ferent UserIDs in the training data, and we expand UserID
as a 22,023,547-dimensional binary feature vector. We ex-
pand the following categorical features into binary features:
AdID, AdvertiserID, QueryID, KeywordID, TitleID, Descrip-
tionID, UserID, DisplayURL, user’s gender, user’s age, depth
of session, position of ad and combination of position and
depth. We also expand query’s tokens, title’s tokens, de-
scription’s tokens and keyword’s tokens into binary features.
That is, if a token occurs in title, query, description or key-
word, the corresponding value in the feature vector will be
1, or 0 otherwise. For some of our models, we only construct
the expanded features for those IDs with clicks. For those
IDs without any clicks, we do not generate any binary indi-
cator for them. Eventually we have features with more than
ten million dimensions, but only a few of them are non-zero.
That is, the feature vectors are sparse.

2.3.3 Click-Through Rate Features
Click-through rate features are simple but very useful in

our models. For each categorical feature, we compute the
average click-through rate as an additional one-dimensional
feature. Take AdID as an example. For each AdID, we com-
pute the average click-through rate for all instances with the
same AdID, and use this value as a single feature. This fea-
ture represents the estimated click-through rate given its
category. We compute this kind of feature for AdID, Adver-



tiserID, depth, position and (depth−position)/depth.
However, we observe that some categories come with only

a few or even no instances. Computing the click-through
rate directly for those categories would result in inaccurate
estimations because of the insufficient statistics. Thus, we
apply smoothing methods during click-through rate estima-
tion. We mainly use a simple additive smoothing

pseudo-CTR =
#click + α× β

#impression + β
, (1)

and we name it pseudo click-through rate (pseudo-CTR). In
our experiments, we set α as 0.05 and β as 75. We gener-
ate pseudo-CTR features for AdID, AdvertiserID, QueryID,
KeywordID, TitleID, DescriptionID, UserID, DisplayURL,
user’s age, user’s gender and (depth−position)/depth.

2.3.4 ID Raw Value Features
We observe that the numerical value of IDs contain some

information. For instance, we observe that #impression de-
creases when the value of KeywordID increases. We suspect
that IDs values may contain time information if they were
sequentially assigned. To exploit this information, we use
the raw value of IDs as features directly. We have this kind
of feature for TitleID, QueryID, KeywordID, DescriptionID
and UserID.

To capture the trends in the raw ID values more generally,
we quantize IDs by their value into 10000 categories. We
generate this kind of grouped-ID value feature for AdID, Ad-
vertiserID, QueryID, KeywordID, TitleID, DescriptionID,
and UserID.

2.3.5 Other Numerical Features
Other numerical features that we use include numerical

value of depth, numerical value of position and the relative
position, which is (depth−position)/depth. Another kind of
numerical feature we take is called the length feature. In par-
ticular, we calculate the number of tokens for each QueryID,
KeywordID, TitleID and DescriptionID, and use a numeri-
cal value to represent it. A weighted version is also applied,
where each token is weighted by their idf value instead of
1 above. We also use #impression of AdID, AdvertiserID,
ad’s position, session’s depth, relative position as features in
some of our models.

2.3.6 Token’s Similarity Features
The dataset provides the tokens of each QueryID, Key-

wordID, TitleID and DescriptionID. To utilize these infor-
mation, we try to compare the similarity between query,
keyword, title and description, and use these combinations
of similarities as a 6-dimensional feature for our models. We
have two methods to compute the similarity. The first uti-
lizes the cosine similarity between tf-idf vector of tokens di-
rectly as in [20]. The second adopts topic model to extract
latent features. We use LDA model implemented by [18] to
do this. In our experiments, we extract 6 and 20 topics from
LDA with α = 0.5 and other default parameters. Then, we
compute topic’s cosine similarity between each type of IDs
as one feature. So eventually, we have 3 similarity feature
sets, each of them are 6-dimensional.

3 Individual Models
In this section we introduce several different approaches

for click-through rate prediction, which can be treated as so-
lutions in the domain of classification, regression and rank-
ing. Table 2 provides a comparison among each kind of

individual models. The detailed information about each in-
dividual model’s setting, input features and performance on
the validation set and test set is listed in Appendix B.

Table 2: The best performance (on the public test set) for
each kind of individual models

Model Validation AUC Public Test AUC
Näıve Bayes 0.8108 0.7760
Logistic Regression 0.8152 0.7888
Ridge Regression 0.7539 0.7351
SVR 0.8135 0.7705
RLR 0.7442 0.7220
RankNet 0.7941 0.7577
CRR 0.8174 0.7818
Regression Based MF 0.8077 0.7775
Ranking Based MF 0.8246 0.7968

3.1 Classification Models
Here, we try to exploit binary classification models to solve

the problem. For each training instance, we first split it into
(#click) positive samples and (#impression-#click) nega-
tive samples. Then we train a classifier to discriminate pos-
itive samples from negative ones. We explore two models
here, näıve Bayes and logistic regression.

3.1.1 Naïve Bayes
Näıve Bayes is a simple probabilistic classification model

which is based on Bayes’ Theorem. It exploits a strong in-
dependence assumption to efficiently handle a large dataset.
We adopt the multinomial model for each feature in näıve
Bayes. After getting a probabilistic classifier, we directly use
values of the estimated conditional probability as the rank-
ing criteria. We mainly test on the raw categorical features
and use a simple leave-one-feature-out method repeatedly
to select relevant features. AdID, ad’s position, UserID and
QueryID are four useful categorical features we identified.
Besides, a query and title’s tf-idf cosine similarity feature
with discretized to 10 equal intervals is also found to be
useful.

To avoid the insufficient statistics in estimating the condi-
tional probability per feature, two kinds of smoothing tech-
niques as in [25] are applied:

1. Additive smoothing: Add-one smoothing and Laplace
smoothing improve AUC in the validation set, but not
in the test set.

2. Back-off method: Good-Turing estimation and Katz
smoothing, provide the best AUC in both validation
set and test set.

Table 3 compares between different smoothing techniques
for the näıve Bayes model.

Furthermore, we design a simple leave-out heuristic to
avoid using features with zero estimated conditional prob-
ability. The main idea is that if a categorical feature leads
to zero estimated probability during the calculation in an
instance, then we leave this categorical feature out for cal-
culating the overall conditional probability of the instance.
The heuristic decrease the AUC gap between the validation
and the test sets, and reaches competitive AUC on the test
set. The best näıve Bayes model includes more features than
models in Table 3 with feature selection and Good-Turing
smoothing technique. The validation AUC of this model is
0.8108 and the public test AUC is 0.7760.



Table 3: A comparison between different smoothing tech-
niques for näıve Bayes

Method Validation AUC Public Test AUC
Additive smoothing 0.7905 0.7612
Good-Turing 0.8060 0.7736

3.1.2 Logistic Regression
Logistic regression is widely used for binary classification.

Given input data x and weights w, it models the classifica-
tion problem by the following probability distribution

P (y = ±1|x,w) =
1

1 + exp(−y(wTx))
, (2)

where y is the class label. Assume the training instances are
(xi, yi), yi ∈ {1,−1}, i = 1, . . . , N , we consider a maximum
likelihood problem with (2). To avoid overfitting, we add a
regularization term wTw/2. That is, we solve the following
optimization problem for logistic regression.

min
w

1

2
wTw + C

N∑
i=1

log(1 + e−yi(w
Txi)), (3)

where C > 0 is the regularization parameter.

The clicking probability in the logistic regression model is
1/(1 + exp(−(wTx))), which is taken as the ranking criteria.
To solve the optimization problem (3), we adopt a large-scale
linear solver LIBLINEAR [9], which can learn from large data
efficiently. We take the default parameters of LIBLINEAR.

In our experiments, we randomly sample 10% of the of-
ficial training data with replacements to train the logistic
regression model. We tried larger sample sizes but the per-
formance did not improve. We thus stayed with the smaller
sample size (while paying the price of some instability). For
the logistic regression model, we have tried the following
steps to enhance performance and diversity.

• Feature selection:
We modify the sparse features of expanded id’s tokens
in Section 2.3.2. We only use those indicators for fre-
quent query tokens. That is, we set a parameter t > 0
and only use query tokens that appear more than t
times. We set t = 20 in our models.
• Different sampling strategy:

Originally we sample the instances directly, but it is
not reasonable because each instance may contains mul-
tiple impressions. Therefore, we try impression-based
sampling as in Section 2.2 to sample on impressions
rather than instances.
• Separate users to UserID 0 and others:

Users with UserID=0 represent unknown users, and
those users may behave differently to others. So we try
to separate users into the group with UserID=0 and
others. Then, we train two separate models for these
two groups and combine the results. In this model, we
use different sampling ratio on the two group. Small
sampling ratio on the users with UserID=0 is enough.
Larger sampling ratio on the other group can enhance
the performance.
• Train on instances with positive clicks only:

We try to train a model on the training instances with
positive clicks only and find that the performance of
this model is rather comparable with other models.

Including all the steps above leads to the best result on
the public test set for the model, achieving 0.8152 on the
validation set and 0.7888 on the public test set.

3.2 Regression Models

For the regression models, we use CTR =
#click

#impression
as the value to be predicted. The idea behind is that the re-
gression models will give higher CTR to those instances that
are more likely to be clicked. Although regression models do
not aim to optimize AUC, they turn out to work well for this
criteria. We use two different regressions models, ridge re-
gression and support vector regression.

3.2.1 Ridge Regression
Ridge Regression minimizes the following objective func-

tion:

min
w

λ

2
wTw +

1

N

N∑
i=1

(wTxi − yi)2,

where N is the number of instances; xi, yi are the feature
vector and the label. This well-studied algorithm has a close
form solution, that can be obtained efficiently.

We include one ridge regression model in our final solution,
which is trained on the whole training data. This model
reaches 0.7539 on the validation and 0.7351 on the public
test set.

3.2.2 Support vector regression
Support vector regression (SVR) is proposed by Vapnik

[24], which is an extension from support vector classification
[2]. SVR solves the following optimization problem.

min
w

1

2
wTw + C

N∑
i=1

ξε(w;xi, yi), (4)

where C > 0 is the regularization parameter, and

ξε(w;xi, yi) = max(|wTφ(xi)− yi| − ε, 0)2 (5)

is the squared ε-insensitive loss function associated with
(xi, yi). Function φ(·) maps x to higher dimension space,
and we take the degree-2 polynomial mapping here.

To solve the degree-2 polynomial SVR problem efficiently,
we adopt an extension of LIBLINEAR that directly expands
features without using a kernel [5]. The data of this compe-
tition is accordant to the situations for using primal solvers
of LIBLINEAR illustrated in Appendix L of [9]. We also use
the number of impressions as instance weights.

The degree-2 polynomial expansion gives about 0.35% im-
provement on AUC compared to linear SVR when using only
pseudo-CTR as the features. For both cases, we set ε in (5)
to be zero and use the default parameters of the primal L2-
loss SVR solver in LIBLINEAR. This model is used in our
final ensemble and blending stage as SVR-1 in Appendix B.

The best degree-2 polynomial SVR model we used is based
on a similar setting of SVR-1. But we discard the pseudo-
CTR of AdvertiserID and KeywordID. We then add the to-
ken’s similarity features as describing in Section 2.3.6. This
model is our SVR-2 predictor. It improves the result from
0.7990 to 0.8135 on the validation and from 0.7610 to 0.7705
on the test set. For both models, the total training pro-
cedure of LIBLINEAR costs about two hours for the whole
training set.



3.3 Ranking Models
For the ranking models, we divide each aggregated train-

ing instances into (#click) positive samples and (#impression-
#click) negative samples and try to minimize pairwise 0/1
loss, which is equivalent to maximizing AUC. We think this
kind of model is more suitable for the task, because it opti-
mizes AUC directly. We exploit two pairwise ranking models
here, rank logistic regression (RLR) and RankNet.

3.3.1 Rank Logistic Regression
As reported in KDDCup 2009 [14], we try to minimize the

pairwise logistic loss. That is, we optimize

min
w

1

N+N−

N+∑
i=1

N−∑
j=1

log
(

1 + exp(−wT (xi − xj))
)
,

where N+ is the number of positive samples, N− is the
number of negative samples, xi has positive label and xj
has negative label.

We solve this problem by stochastic gradient descent (SGD).
The result is 0.7442 on the validation set and 0.7220 on the
public test set.

3.3.2 RankNet
RankNet [3] builds a ranking model based on neural net-

work. Given pair of instance (xi,xj), our goal is to minimize
the cross entropy loss function

Cij ≡ C(r̂ij) = −P ij logPij − (1− P ij) log(1− Pij)

where P ij is the target value and Pij ≡ (er̂ij )/(1 + er̂ij ).

Because a pair of instances always contains a positive and
a negative sample, P ij is always 1, so the loss function be-
comes Cij = −r̂ij + log(1 + er̂ij ), where

r̂ij = ζ(r̂i − r̂j). (6)

In (6), r̂i denotes the model prediction on instance xi, and
ζ is a scaling scalar.

We use two layers neural network with an additional bias
term. The output for instance xi is

r̂i =

H∑
j=1

w
(2)
j tanh(

∑
k

w
(1)
jk

T
xik),

where xi is the feature vector of the i-th instance.

For this model, we normalize the features into [0,1], and
apply early stopping and weight decay regularization to avoid
over-fitting. The model is trained by SGD with random
pairs. The model reaches 0.7941 on the validation set and
0.7577 on the public test set.

3.4 Combining Regression and Ranking
We also explore another model that combines the ranking

loss and the regression loss during learning.

3.4.1 SGD Support Vector Machine
According to [22], minimizing an objective function that

combines ranking loss and regression loss (CRR) usually
leads to strong performance on ranking metrics. We use
the package suite of fast incremental algorithms for machine
learning (sofia-ml) [21] that uses SGD to exploit such an
idea. Let N+ denotes the number of positive samples, N−

denotes the number of negative samples, xi denotes positive
instances and xj denotes negative samples. We solve the

combined objective function

min
w

λ

2
wTw +

p

N+N−

N+∑
i=1

N−∑
j=1

Hij(w) +
(1− p)
N

N∑
k=1

Lk(w)

(7)
by using sgd-svm solver and combined-ranking loop type,
where Hij(w) = max(0, 1 − wT (xi − xj)), and Lk(w) =
max(0, 1−yk(wTxk)) and p is the probability of considering
the ranking loss. We also experiment on different solver and
loop type combinations and the setting above leads to the
best performance.

We include four combine regression and ranking models
in our final solution, all of them use the same parameters
but with different features. We also use leave-one-feature-
out strategy for feature selection for this model. The model
achieves 0.8174 on the validation set and 0.7818 on the pub-
lic test set.

3.5 Matrix Factorization Models
Matrix Factorization (MF) is a common technique for col-

laborative filtering (CF). This competition task can be mod-
eled as a recommendation problem solvable by CF, because
similar users may click the similar ads. Therefor, we apply
MF to exploit latent information from data. We utilize this
kind of model on regression problems as in Section 3.2, and
on ranking problems as in Section 3.3.

3.5.1 Regression Based Matrix Factorization
Considering the traditional CF approach, we can treat ads

as items. We first divide all our features as user’s features
and item’s features, and then we can apply feature-based
matrix factorization model as in [7] on this problem.

Using features in factors, the prediction of feature-based
matrix factorization on instance xi can be represented as

r̂(xi)

= µ+ (
∑
j

w
(u)
j αj +

∑
j

w
(i)
j βj) + (

∑
j

pjαj)
T (
∑
j

qjβj),

(8)

where µ is global bias, α and β are the user features and
item features. w models bias of the features, p and q rep-
resent factors of the features. We use pseudo-CTR of user,
expanded UserID, age, gender and raw value as user’s fea-
tures. For item features, we use pseudo-CTR (ad, adver-
tisement, query, title, keyword, description and URL), bi-
nary expanded features (depth, position, ad, advertiser and
query), raw value features (title, query and title) and num-
ber of tokens in query, title, keyword and description.

We minimize the least squared error between our predic-
tion r̂ and target r, where r is CTR of the training instance.

min
θ

N∑
i=1

(r(xi)− r̂(xi))2 +
λ

2
‖θ‖2 subject to (8), (9)

where θ represents the parameters of the model and λ is the
regularization parameter.

Training procedure is done by modifying the package SVD-
Feature [7] with SGD. The best performance of this model
is 0.8077 on the validation set and 0.7775 on the public test
set.



3.5.2 Ranking Based Matrix Factorization
The basic idea of this model is from the Factorization

Machine [19]. We modify the objective function to optimize
the pair-wise ranking loss. We choose the model because it
provides a powerful way to make use of explicit data to over-
come the sparsity of the implicit data. For this model, all
training instances are expanded into positive and negative
samples as in Section 3.3.

The output of this model is similar with regression based
MF in Section 3.5.1 except that not all features possess bias
term or interact with other features, and we didn’t group
features into user’s feature and item’s features in this model.
Thus features can freely interact with any other features.
The prediction of each instance r̂(xi) can be obtained by

r̂(xi) =

A∑
j=1

wjαj +

B∑
j=1

B∑
k=j+1

〈pj ,pk〉βjβk, (10)

the first term represents features’ bias, and the second term
is the sum of the inner product between every pair of pa-
rameter vector from different features.

In our model, any features can belong to α, β or both of
them. We use all-pairs AUC with weighted instance as our
optimization criterion to fit the evaluation metric of track 2.
The optimization criterion is:

min
θ

N+∑
i=1

N−∑
j=1

L(r̂(xi)− r̂(xj)) +
λ

2
‖θ‖2 subject to (10),

(11)
where θ represents the parameters of the model. We take
the logistic loss L(δ) = ln(1/(1 + exp(−δ))) here, and λ is
regularization parameter.

We use SGD to train the model. In each step, we random
sample a positive and a negative sample as a pair to update
the parameters. And in each iteration, we randomly sample
one million pairs for SGD to optimize. In this model, we only
use tokens of query, title, description and keyword as pair-
wise interaction features, all other features are only trained
as bias. This is the best individual model we have, and can
achieve 0.8246 on the validation set and 0.7968 on the public
test set.

4 Validation Set Blending
The goal of validation set blending is to combine each sin-

gle predictors, to boost the performance and to enhance the
diversity for next stage ensemble. Validation set blending
methods work similar to individual models, except that the
most of features come from the individual models’ predic-
tions. We discover that adding some extra features, which
are not from individual model’s prediction, can enhance the
performance a little bit. In addition, we also found that
re-blending with predictions from blending models can ex-
ploit the additional enhancement, and we named it two-level
blending models. Feature selection and score transformation
are also very useful techniques for blending models. The
performance of each blending models are shown is Table 4,
including results for 1-level and 2-level blending. The de-
tailed features and parameters of these models are listed in
the Appendix B.

4.1 Feature Selection
As discuss in Section 2.2, we could not sample a good

validation set without time information, and hence we do

Table 4: The best performance of each validation set blend-
ing models

Model Public Test AUC
1-level SVR 0.8038
1-level LambdaMart 0.8051
1-level RankNet 0.8058
2-level SVR 0.8031
2-level CRR 0.8050
2-level RF-LambdaMart 0.8059
2-level RankNet 0.8062

observe that for some models, the performance is very dif-
ferent between our validation set and the public test set.
To avoid wrongly including overfitted models in blending,
some of our blending models use a simple criteria to select
input features. If the difference between AUC on validation
set and AUC on test set is larger than a threshold, we dis-
card that model before blending. We take 0.0310̃.035 as the
threshold.

4.2 Score Transformation
The distribution of each individual model’s outputs can

be very different. As in [15], applying score transformation
before blending may boost the performance for some of the
models. We have tried some transformation methods:

• raw score: no score transformation
• normalized score: features are scaled into a specific

interval by simple normalization
• ranked score: sort all instances in validation and test

set according to the model’s output score, and then
scale the scores into [0,1] linearly

For the two-level blending models, we will use score trans-
formation once again before the second level of blending.

4.3 Blending Models
4.3.1 RankNet

Inspired by [13] we also use RankNet to blend models.
The RankNet blending model is the same as model in Sec-
tion 3.3.2, except that the input features are predictions
from each single models. Feature selection and ranked score
transformation are applied in this model. We also add ad-
ditional features and other blending models prediction into
our RankNet blending model. All our RankNet models are
trained by 20 nodes single layer neural network. Our best
validation set blending model is generated from this method,
which achieves 0.8062 AUC on the public test set. More
detailed information about model’s setting is listed in Ap-
pendix B.

4.3.2 Support Vector Regression
We also use degree-2 polynomial SVR models which is in-

troduced in Section 3.2.2. Our validation set is much smaller
than the training set, and the training procedure here using
LIBLINEAR takes only 10 minutes. The short training time
enables us to do parameter selection on C and γ. Thus ,
we use grid search to find parameters as suggested in [12].
We have three one-level blending models, and one two-level
blending models from SVR. All models use #impression as
their instance weights and the parameter ε is always set to
be zero. The two-level SVR model overfits our validation
set severely, which can be easily seen from the difference of
it’s improvement from VB-1 to VB-9 on validation set and
the public test set. It reaches 0.8038 AUC on the public test
set.



4.3.3 Combined Regression and Ranking
Because of the promising result from combined ranking

and regression (CRR) individual models, we also adopt CRR
to validation set blending. Our strategy is two-level valida-
tion set blending, that is, we take the prediction on valida-
tion set from other blending model as feature. We include
one CRR blending model in our final solution. The model
consist of blending feature and additional features. We use
the same parameters as CRR individual models, except that
we strengthen the model regularization and decrease SGD
iteration due to the smaller size of validation data. As shown
in Appendix B, the CRR blending model gives 0.0018 im-
provement on the public test set.

4.3.4 LambdaMart
For another model of validation blending, we apply Lamb-

daMART, as proposed in [4]. We choose LambdaMART due
to its recent success on Yahoo! Learning to Rank Challenge.
The unique properties of the model enjoy a few advantages.
First, LambdaMART is a form of gradient boosted regres-
sion tree, which leads to promising performance [26]. Sec-
ond, the model respects the non-smooth ranking objective
without directly calculating the gradient. Last, we can eas-
ily tune parameters to prevent overfitting validation data
via bagging.

To implement LambdaMART, we use the package pro-
vided in [11], with slight modifications to meet the ranking
objective. We also incorporate bagging for tree training for
speedup. And bagging also helps us to avoid overfitting.

Inspired by [16], we implement another variant that uses
initialized residual obtained from Random Forest as the tar-
get. We hope to benefit from the generalization ability of
Random Forest (RF), while running at a much faster speed
for effective model checking. We first train a Regression
Random Forest (RegressionRF ) and then initialize the tar-
get of LambdaMART as:

targeti = ri −RegressionRF (xi), for i = 1 · · ·N. (12)

After training, we then sum the predictions from both mod-
els as

r̂(xi) = r̂′(xi) +RegressionRF (xi) (13)

where r̂′(xi) represents the predict value of LambdaMART
on instance xi. Note that the λ updates in LambdaMART
happens on pair misplacements, so with a fair residual as
target, we can save significant amount of updates, leading
to much faster convergence.

The RF-initialized LambdaMART improves the perfor-
mance slightly and converges much faster, dropping to around
300 iterations from 1,500 iterations to terminate. This model
can achieve 0.8059 on the public test set.

5 Test Set Ensemble
In order to improve leaderboard (test set) performance,

we further combine individual and blending models using
ensemble methods. We first apply the test set blending tech-
nique to linearly combine several selected models. The tech-
nique uses leaderboard results to estimate the linear blend-
ing weight of each model, which has been used for optimizing
RMSE in previous competitions [23, 6]. We adapt the same
technique to optimize AUC. Since we can select five entries
as final entries, we also include several uniform average re-
sults as a backing for the case that test set linear blending
overfits public leaderboard result.

5.1 Test set Linear Blending
The test set linear blending technique proposed by [23]

minimizes the square error using ridge regression. To adapt
the technique for AUC, we transform AUC to a square-error-
like format.

It is known that AUC is the same as pairwise ranking ac-
curacy. Here we assume that each instance has the same
number of impressions because the true impression count
of testing instances are hidden. Let n be the number of in-
stances in the test set, y ∈ Rn be the true CTR of instances,
and x ∈ Rn be a predicted ranking, where xi ∈ [1, n] is the
rank of the i-th instance, and xi 6= xj for any i, j. We define
pairwise ranking prediction x̂i,j = sign(xi−xj) for each pair

(i, j) and use x̂ ∈ {1,−1}(
n
2) to denote the pairwise ranking

prediction for all pairs. Similarly, ŷ ∈ {1, 0,−1}(
n
2) denotes

the optimal pairwise ranking. Then, we have

AUC = c1x̂
T ŷ + c2 = −c3‖x̂− ŷ‖2 + c4 (14)

for constants c1, c2, c3, and c4. Equation (14) suggests that
minimizing the square error between x̂ and ŷ is equivalent
to maximizing AUC.

Let x̂(m) be the predicted pairwise rankings from the m-
th model, and X̂ = [x̂(1), · · · , x̂(M)]. The optimal weights
w for linear blending these M models obtained from ridge
regression is (X̂T X̂ + λI)−1X̂T ŷ, where λ is the regulariza-
tion parameter. Although the true ŷ is unknown, we may
use the leaderboard result (AUC) to estimate X̂T ŷ. In ad-

dition, each element in X̂T X̂ can be calculated in the same
way as calculating AUC.

The ideal ensemble prediction is x̂∗ = X̂w. But this is a
real-valued pairwise ranking prediction, and we have to con-
vert it to a ranking prediction x∗. Unfortunately, the con-
version is not easy because the pairwise ranking prediction
may not induce a linear ordering, i.e. the pairwise order is
not transitive. The problem of finding a linear ordering with
minimum pairwise mis-rankings with respect to a pairwise
ranking is NP-complete [8]. Thus we adopt the approxima-
tion approach proposed by [1] which takes the pairwise rank-
ing prediction x̂∗ as the comparison function of the popular
QuickSort algorithm. The result of the QuickSort algorithm
is a linear order of instances, and the ranking prediction x∗

is constructed according to this linear order.
Note that the approximation introduces some randomness

into the result, so we did multiple rounds of QuickSort and
average the ranking predictions of each round for stability.
Moreover, we found out that adding more models into the
ensemble sometimes results in worse performance. The rea-
son may be the hidden impression counts or the difficulty of
approximation. In practice, we apply this blending method
on a manually selected set of high-performance and diverse
models.

5.2 Uniform Average
In addition to test set linear blending, we also tried the

simplest blending method: Uniformly average the ranking
predictions. Given that we have five final entries, at first
we thought this is an insurance against the failings of test
set linear blending. But it turns out to be better than test
set linear blending on the manually selected set of models.
Furthermore, we selected the top-five models according to
the public leaderboard result and took uniform average of
them as our final submission. In the end this is the highest



performance model of ours.

Table 5: Performance of the best single model, validation
set blending model and test set ensemble model

Model
Public

Leaderboard AUC
Best individual model (Rank MF-5) 0.7968
Best Validation Set Blending (VB-12) 0.8062
Best Test Set Ensemble (TE-3) 0.8069

6 Conclusion
In this paper, we introduce our solution for track 2 of KDD

Cup 2012. We model users’ behavior on click-through rate
by using linear and non-linear models and aggregate all of
them. For each single model, we provide various kinds of fea-
tures combination to capture users’ behavior from different
perspective with competitive performance. Several ensem-
ble methods are designed to combine models and boost the
performance. We believe the success of our solution is based
on capturing various information in the data and utilizing
those information effectively. Table 5 provides a compar-
ison among the best single model, the best validation set
blending model and the best test set ensemble model.
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APPENDIX
A Feature List
A.1 Categorical Features

ID Feature Description
cat User categorical feature for UserID
cat Query categorical feature for QueryID
cat Ad categorical feature for AdID
cat Keyword categorical feature for KeywordID
cat Position categorical feature for ad’s position

Table 6: Categorical Features

A.2 Basic Sparse Features

ID Feature Description
binary Ad binary expanded AdID
binary Advertiser binary expanded AdvertiserID
binary Query binary expanded QueryID
binary Keyword binary expanded KeywordID
binary Title binary expanded TitleID
binary Description binary expanded DescriptionID
binary User binary expanded UserID
binary Url binary expanded Display Url
binary Gender binary expanded user’s gender
binary Age binary expanded user’s age
binary Position binary expanded ad’s position
binary Depth binary expanded session’s depth
binary PositionDepth binary expanded (position,depth)
binary QueryTokens binary expanded query’s tokens
binary TitleTokens binary expanded title’s tokens
binary DescriptionTokens binary expanded description’s tokens
binary KeywordTokens binary expanded keyword’s tokens

Table 7: Basic Sparse Features

A.3 Click-Through Rate Features

ID Feature Description
aCTR Ad average click-through rate of AdID
aCTR Advertiser average click-through rate of AdvertiserID
aCTR Depth average click-through rate of session’s depth
aCTR Position average click-through rate of ad’s position
aCTR RPosition average click-through rate of relative position (depth−position)/depth
pCTR Ad pseudo click-through rate of AdID
pCTR Advertiser pseudo click-through rate of AdvertiserID
pCTR Query pseudo click-through rate of QueryID
pCTR Title pseudo click-through rate of TitleID
pCTR Description pseudo click-through rate of DescriptionID
pCTR User pseudo click-through rate of UserID
pCTR Keyword pseudo click-through rate of KeywordID
pCTR Url pseudo click-through rate of Display Url
pCTR RPosition pseudo click-through rate of relative position (depth−position)/depth
pCTR Gender pseudo click-through rate of user’s gender
pCTR Age pseudo click-through rate of user’s age

Table 8: Click-Through Rate Features



A.4 ID Raw Value Features

ID Feature Description
value Title value of TitleID
value Query value of QueryID
value Keyword value of KeywordID
value Description value of DescriptionID
value User value of UserID

Table 9: ID Raw Value Features

A.5 Grouped ID Value Features

ID Feature Description
group Ad quantized AdID
group Advertiser quantized AdvertiserID
group Title quantized TitleID
group Query quantized QueryID
group Keyword quantized KeywordID
group Description quantized DescriptionID
group User quantized UserID

Table 10: Grouping ID Value Features

A.6 Other Numerical Features

ID Feature Description
num Position Numerical value of ad’s position
num Depth Numerical value of ad’s position
num RPosition Numerical value of relative position (depth−position)/depth
num Query Number of tokens in query
num Title Number of tokens in title
num Keyword Number of tokens in keyword
num Description Number of tokens in description
num idf Query Sum of tokens’ idf values in query
num idf Title Sum of tokens’ idf values in title
num idf Keyword Sum of tokens’ idf value in keyword
num idf Description Sum of tokens’ idf value in description
num Imp Ad Number of impressions for AdID
num Imp Advertiser Number of impressions for Advertiser
num Imp Depth Number of impressions for session’s depth
num Imp Position Number of impressions for ad’s position
num Imp Rposition Number of impressions for relative position (depth−position)/depth

Table 11: Other Numerical Features

A.7 Token’s Similarity Features

ID Feature Description
similarity tfidf similarity computed by tf-idf vector between query, title, description and keyword (6 features)
similarity topic 6 Topic similarity between query, title, description and keyword (6 features, form 6 topics LDA)
similarity topic 20 Topic similarity between query, title, description and keyword (6 features, from 20 topics LDA)

Table 12: Token’s Similarity Features

B Predictor List

In this section we list all predictors which are included in our final submission. VAUC indicates the model’s performance
on our own validation set, and TAUC means the performance on public leaderboard.



B.1 Naïve Bayes Predictors
• NB-1: VAUC=0.7905, TAUC=0.7612

additive sommthing and leave-out heuristic
features: cat User, cat Query, cat Ad, cat Keyword, cat Position

• NB-2: VAUC=0.8060, TAUC=0.7736
Good-turing
features: cat User, cat Query, cat Ad, cat Keyword, cat Position

• NB-3: VAUC=0.8108, TAUC=0.7760
Good-turing, quantized numerical features, use query and title’s consine similarity tfidf only
features: cat User, cat Query, cat Ad, cat Position, similarity tfidf

B.2 Logistic Regression Predictors
• LR-1: VAUC=0.8144, TAUC=0.7853

random sample 10% of instances, expand binary features for ID with clicks only, using default parameters in LIBLINEAR
features: similarity tfidf, pCTR Ad, pCTR Advertiser, pCTR Query, pCTR User, binary User, binary Ad, binary Query,
value User, value Query, num Query, num Title, num Description, num Keyword, binary Gender, binary Age,
binary PositionDepth, binary QueryTokens

• LR-2: VAUC=0.8144, TAUC=0.7890
random sample 10% of instances, expand binary features for ID with clicks only, Feature selection on biny QueryTokens,
using default parameters in LIBLINEAR
features: similarity tfidf, pCTR Ad, pCTR Advertiser, pCTR Query, pCTR User, binary User, binary Ad, binary Query,
value User, value Query, num Query, num Title, num Description, num Keyword, binary Gender, binary Age,
binary PositionDepth, binary QueryTokens

• LR-3: VAUC=0.8129, TAUC=0.7860
users separate, divide instances into positive and negative samples before sampling, random sample 10% user0’s instances
and 10% other user’s instance, expand binary features for ID with clicks only, Feature selection on biny QueryTokens,
using default parameters in LIBLINEAR
features: similarity tfidf, pCTR Ad, pCTR Advertiser, pCTR Query, pCTR User, binary User, binary Ad, binary Query,
value User, value Query, num Query, num Title, num Description, num Keyword, binary Gender, binary Age,
binary PositionDepth, binary QueryTokens

• LR-4: VAUC=0.8181, TAUC=0.7876
divide instances into positive and negative samples before sampling, random sample 10% , expand binary features for ID
with clicks only, Feature selection on biny QueryTokens, using default parameters in LIBLINEAR
features: similarity tfidf, pCTR Ad, pCTR Advertiser, pCTR Query, pCTR User, binary User, binary Ad, binary Query,
value User, value Query, num Query, num Title, num Description, num Keyword, binary Gender, binary Age,
binary PositionDepth, binary QueryTokens

• LR-5: VAUC=0.8152, TAUC=0.7888
user separate, divide instances into positive and negative samples before sampling ,random sample 10% user0’s instances
and 30% other user’s instance, expand binary features for ID with clicks only, Feature selection on biny QueryTokens,
using default parameters in LIBLINEAR
features: similarity tfidf, pCTR Ad, pCTR Advertiser, pCTR Query, pCTR User, binary User, binary Ad, binary Query,
value User, value Query, num Query, num Title, num Description, num Keyword, binary Gender, binary Age,
binary PositionDepth, binary QueryTokens

• LR-6: VAUC=0.8011, TAUC=0.7612
train on instances with click>0 only, using default parameters in LIBLINEAR
features: num RPosition, num Query, num Title, num Description, num Keyword, binary User, binary Advertiser, bi-
nary Ad, binary Query, binary QueryTokens, binary TitleTokens, binary DescriptionTokens, binary KeywordTokens

B.3 Ridge Regression Predictors
• RR-1: VAUC=0.7539, TAUC=0.7351

degree-2 polynomial expansion on real value features, λ = 1
features: binary Age, binary Gender, num Imp Ad, num Imp Advertiser, aCTR Ad, aCTR Advertiser, num Depth,
num Position, num RPosition, num Query, num Title, num Description, num Keyword, num idf Query, num idf Title,
num idf Description, num idf Keyword

B.4 Support Vector Regression Predictors
• SVR-1: VAUC=0.7990, TAUC=0.7610

degree-2 polynomial expansion
features: pCTR Ad, pCTR Advertiser, pCTR Query, pCTR Title, pCTR Description, pCTR User, pCTR Keyworyd,
pCTR Url, pCTR Gender, pCTR Age, pCTR RPosition



• SVR-2: VAUC=0.8135, TAUC=0.7705
degree-2 polynomial expansion
features: pCTR Ad, pCTR Query, pCTR Title, pCTR Description, pCTR User, pCTR Url, pCTR Age, pCTR RPosition,
similarity topic 6, similarity topic 20

B.5 Rank Logistic Regression Predictors
• RLR-1: VAUC=0.7442, TAUC=0.7220
η = 0.001, ζ = 1
features: binary Age, binary Gender, num Imp Ad, num Imp Advertiser, aCTR Ad, aCTR Advertiser, num Depth,
num Position, num RPosition, num Query, num Title, num Description, num Keyword, num idf Query, num idf Title,
num idf Description, num idf Keyword

B.6 RankNet Predictors
• RN-1: VAUC=0.7941, TAUC=0.7577

10 hidden nodes, η = 0.01, λ = 0, ζ = 1
features: num RPosition, pCTR Ad, pCTR Advertiser, pCTR Query, pCTR Title, pCTR Description, pCTR User,
pCTR Keyword, pCTR Url, num Query, num Title, num Description, num Keyword

B.7 Combine Regression and Ranking Predictors
• SGD SVM-1: VAUC=0.8160, TAUC=0.7768
λ = 0.0001, p = 0.5, iterations = 50000000
also use square terms of raw id features
features: binary Ad, binary Advertiser, binary Query, binary Title, binary Description, binary User, binary Keyword,
binary Age, binary Gender, binary PositionDepth, num Depth, num Position, num RPosition, num Query, num Title,
num Description, num Keyword, num idf Query, num idf Title, num idf Description, num idf Keyword, pCTR Ad,
pCTR Advertiser, pCTR Query, pCTR Title, pCTR Description, pCTR User, pCTR Keyword, pCTR Url, value Query,
value Title, value Title, value Description, value user

• SGD SVM-2: VAUC=0.8163, TAUC=0.7785
λ = 0.0001, p = 0.5, iterations = 50000000
features: SGD SVM-1’s features, square term of pCTR features

• SGD SVM-3: VAUC=0.8175, TAUC=0.7817
λ = 0.0001, p = 0.5, iterations = 50000000
also use square terms of raw id features
features: binary Ad, binary Advertiser, binary Query, binary Title, binary Description, binary User, binary Keyword,
binary Age, binary Gender, binary PositionDepth, num Depth, num Position, num RPosition, num Query, num Title,
num Description, num Keyword, num idf Query, num idf Title, num idf Description, num idf Keyword, pCTR Ad,
pCTR Advertiser, pCTR Query, pCTR Title, pCTR User, value Query, value Title, value Title, value Description,
value user, binary Url, group Ad ,group Advertiser, group Title , group Query, group Keyword, group Description,
group User, square term of pCTR features

• SGD SVM-4: VAUC=0.8174, TAUC=0.7818
λ = 0.0001, p = 0.5, iterations = 50000000
features: SGD SVM-3’s features, similarity topic 6

B.8 Regression Based Matrix Factorization Predictors
• Reg MF-1: VAUC=0.8013, TAUC=0.7711
η = 0.005, size of latent factor = 64, λ = 0.04
features: num RPosition, pCTR Ad, pCTR Advertiser, pCTR Query, pCTR Title, pCTR Description, pCTR User,
pCTR Keyword, pCTR Url, num Query, num Title, num Description, num Keyword, binary User, binary Advertiser,
binary Ad, binary Query

• Reg MF-2: VAUC=0.8077, TAUC=0.7775
η = 0.005, size of latent factor = 64, λ = 0.04
features: num RPosition, pCTR Ad, pCTR Advertiser, pCTR Query, pCTR Title, pCTR Description, pCTR User,
pCTR Keyword, pCTR Url, num Query, num Title, num Description, num Keyword, binary User, binary Advertiser,
binary Ad, binary Query, binary Position, binary Depth

B.9 Ranking Based Matrix Factorization Predictors
• Rank MF-1: VAUC=0.8069, TAUC=0.7712
η = 0.01, λ = 0.0001, size of latent factor = 10, iterations = 30
features: pCTR Ad, pCTR Advertiser, pCTR Title, pCTR Keyword, binary User, binary Ad, binary Query, num Query,
num Title, num Description, num Keyword, binary QueryTokens, binary TitleTokens, binary DescriptionTokens, bi-
nary KeywordTokens



• Rank MF-2: VAUC=0.8139, TAUC=0.7853
η = 0.01, λ = 0.0001, size of latent factor = 10, iterations = 40
features: pCTR Ad, pCTR Advertiser, pCTR Query, pCTR Title, pCTR Description, pCTR User, pCTR Keyword,
value Title, value Query, value Keyword, value Description, value User, binary Ad, binary Advertiser, binary Query, bi-
nary Title, binary Description, binary User, binary Keyword, binary Position, binary QueryTokens, binary TitleTokens,
binary DescriptionTokens, binary KeywordTokens

• Rank MF-3: VAUC=0.8227, TAUC=0.7920
η = 0.01, λ = 0.0001, size of latent factor = 10, iterations = 100
features: pCTR Ad, pCTR Advertiser, pCTR Query, pCTR User, value Title, value Query, value Keyword, value Description,
value User, binary Ad, binary Advertiser, binary Query, binary Title, binary Description, binary User, binary Keyword,
binary Position, binary QueryTokens, binary TitleTokens, binary DescriptionTokens, binary KeywordTokensi, num Query,
num Title, num Description, num Keyword, binary Age, binary Gender

• Rank MF-4: VAUC=0.8236, TAUC=0.7935
η = 0.01, λ = 0.0001, size of latent factor = 10, iterations = 100
features: pCTR Ad, pCTR Advertiser, pCTR Query, pCTR User, value Title, value Query, value Keyword, value Description,
value User, binary Ad, binary Advertiser, binary Query, binary Title, binary Description, binary User, binary Keyword,
binary Position, binary QueryTokens, binary TitleTokens, binary DescriptionTokens, binary KeywordTokensi, num Query,
num Title, num Description, num Keyword

• Rank MF-5: VAUC=0.8246, TAUC=0.7968
η = 0.005, λ = 0.0001, size of latent factor = 10, iterations = 80
features: pCTR Ad, pCTR Advertiser, pCTR Query, pCTR User, value Title, value Query, value Keyword, value Description,
value User, binary Ad, binary Advertiser, binary Query, binary Title, binary Description, binary User, binary Keyword,
binary Position, binary QueryTokens, binary TitleTokens, binary DescriptionTokens, binary KeywordTokensi, num Query,
num Title, num Description, num Keyword

B.10 Validation Set Blending Predictors
Following models are trained on validation set, so we use *VAUC here to distinguish them from other models.

• VB-1: *VAUC=0.8321, TAUC=0.8029
blending by poly-2 SVR
features: SVR-2, NB-3, SGD SVM-3, Reg MF-2, LR-2, Rank MF-4

• VB-2: *VAUC=0.8326, TAUC=0.8038
blending by poly-2 SVR, scaling features by normalized score to [0,1]
features: SVR-2, NB-3, SGD SVM-3, SGD SVM-4, Reg MF-2, LR-2, Rank MF-4

• VB-3: *VAUC=0.8322, TAUC=0.7995
blending by poly-2 SVR
features: NB-1, RR-1, RLR-1, Reg MF-1, Reg MF-2, LR-1, LR-2, Rank MF-2, Rank MF-3

• VB-4: *VAUC=0.8376, TAUC=0.8051
blending by LambdaMart
features: NB-1, RR-1, RLR-1, Reg MF-1, Reg MF-2, LR-1, LR-2, Rank MF-2, Rank MF-3

• VB-5: *VAUC=0.8357, TAUC=0.8058
blending by RankNet, scaling features by rank score, also use square of id raw value without score transformation, λ = 0,
ζ = 1
features: NB-1, RR-1, RLR-1, Reg MF-1, Reg MF-2, LR-1, LR-2, Rank MF-2, Rank MF-3, AUV MF-4, value Title,
value Query, value Keyword, value Description, value User

• VB-6: *VAUC=0.8271, TAUC=0.7934
blending by RankNet, scaling features by ranked score, η = 1e−10, λ = 2e−3, ζ = 2
features: SVR-1, NB-2, NB-3, SGD SVM-1, SGD SVM-2, LR-6, RN-1, Rank MF-1

• VB-7: *VAUC=0.8330, TAUC=0.8049
blending by RankNet, scaling features by rank score, η = 1e−10, λ = 2e−3, ζ = 2
features: NB-1, RR-1, RLR-1, Reg MF-1, Reg MF-2, LR-1, LR-2, Rank MF-2, Rank MF-3, AUV MF-4

• VB-8: *VAUC=0.8336, TAUC=0.8043
blending by RankNet, scaling features by ranked score, η = 1e−10, λ = 2e−3, ζ = 2
features: NB-1, NB-2, NB-3, RR-1, RLR-1, Reg MF-1, Reg MF-2, LR-1, LR-2, Rank MF-1, Rank MF-2, Rank MF-3,
AUV MF-4, SGD SVM-3

• VB-9: *VAUC=0.8348, TAUC=0.8031
two-level blending by poly-2 SVR, scaling features by normalized score to [-1,1]
features: VB-1, VB-2, VB-3, VB-6, VB-7

• VB-10: *VAUC=0.8319, TAUC=0.8050
two-level blending by CRR, only use square of raw ID value features
features: VB-7, value Title, value Query, value Keyword, value Description, value User



• VB-11: *VAUC=0.8356, TAUC=0.8059
two-level blending by LambdaMART on Random Forest’s residual
features: NB-1, NB-2, NB-3, RR-1, RLR-1, Reg MF-1, Reg MF-2, LR-1, LR-2, LR-3, Rank MF-1, Rank MF-2, Rank MF-
3, AUV MF-4, SGD SVM-3, SGD SVM-4, VB-9

• VB-12: *VAUC=0.8357, TAUC=0.8062
two-level blending by RankNet, scaling features by ranked score, also use square of id raw value as features, η = 1e−10,
λ = 1e−3

features: NB-1, RR-1, RLR-1, Reg MF-1, Reg MF-2, LR-1, LR-2, LR-4, LR-5, Rank MF-2, Rank MF-3, AUV MF-4,
Rank MF-5, VB-1, VB-4, VB-8, value Title, value Query, value Keyword, value Description

B.11 Test Set Ensemble Predictors
• TE-1: TAUC=0.8065

manual diversity feature selection uniform average
features: VB-4, Vb-5, VB-7, VB-9, VB-10, VB-11, VB-12

• TE-2: TAUC=0.8063
manual diversity feature selection leader board ensemble
features: VB-4, Vb-5, VB-7, VB-9, VB-10, VB-11, VB-12

• TE-3: TAUC=0.8069
uniform average average of top five models
features: VB-5, VB-11, VB-12, TE-1, TE-2


