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ABSTRACT 

The concern of privacy has become an important issue for online 

social networks. In services such as Foursquare.com, whether a 

person likes an article is considered private and cannot be 

disclosed; only the aggregative statistics of articles (i.e., how 

many people like this article) is revealed. This paper tries to 

answer a question: can we predict the opinion holder in a 

heterogeneous social network without any labeled data? This 

question can be generalized to an unseen-type link prediction with 

aggregative statistics problem. This paper devises a novel 

unsupervised framework to solve this problem, including three 

main components: (1) a three-layer factor graph model and three 

types of potential functions; (2) a ranked-margin learning 

algorithm for parameter tuning; and (3) a two-stage inference 

algorithm for link prediction. Finally, we evaluate our method on 

four diverse prediction scenarios using four datasets: preference 

(Foursquare), repost (Twitter), response (Plurk), and citation 

(DBLP). We further exploit nine unsupervised models to solve 

this problem as baselines. Our approach not only wins out in all 

scenarios, but on the average achieves 9.90% AUC and 12.59% 

NDCG improvement over the best competitors. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications – data 

mining; J.4 [Computer Applications]: Social and Behavioral 

Sciences; E.2 [Data]: Data Storage Representations – linked 

representations. 

General Terms 

Algorithms, Experimentation 

Keywords 

Link prediction, Social network mining, Heterogeneous social 

network, Probabilistic graphical model 

1. INTRODUCTION 
Most of the social network services allow users to express their 

opinions (e.g., “like” or “+1”) to messages posted by other people. 

Such individual opinions are usually valuable: companies can 

identify a specific customer’s preference, and government can 

recognize the will or desire of target influential person. 

However, due to privacy concern, opinion holders are sometimes 

hard to be determined. An example is Foursquare, one of the most 

popular location-based social network websites. In Foursquare, 

users can post tips to certain venues of their interest, and other 

people may “like” the tips. Nevertheless, the information about 

which user likes which tip is generally not available to public due 

to the website’s privacy policy. 

Another example is Pinterest.com, which is a pinboard-style 

photo sharing website. In Pinterest, users can “like” or “repin” 

others’ images, but only a little portion of such information is 

available due to internal limitation of Pinterest (only first 24 

“like” and first 8 “repin” are shown on the webpage). Thus, it is 

difficult to gather information about each individual’s opinion 

under such circumstances. 

Fortunately, aggregative statistics of opinions are usually 

available in such websites. For example, the total count of “like” 

of each tip in Foursquare is accessible, and the total count of 

“like” and “repin” of an image in Pinterest is also obtainable. 

Such aggregative statistics are important because it is usually the 

only available clue to understand the quality of certain item 

without violating the policy rule. Hence, this paper tries to address 

a problem: can we predict the individual opinions (e.g., whether a 

user likes a tip) using the aggregative statistics together with other 

information in a heterogeneous social network? 

We generalize the question to an unseen-type link prediction with 

aggregative statistics problem. The term unseen is used because 

we assume it is not possible to obtain which person likes which 

tip from data (therefore, such “like” link can be regarded as a kind 

of relationship that is previously unseen). From link prediction 

point of view, one can assume there is no labeled training data 

available, to predict the type of a link. 

An example we use through this paper is a network gathered from 

Foursquare (Figure 1). There are 7 nodes and 7 links with 3 node 

types (users, items, and categories) and 3 link types (be-friend-of, 

own, and belong-to). We want to predict the existence of “like” 

links (e.g., whether user u2 likes item r2 or not) using the 

aggregative statistics (e.g., total like count of the item r2 is t(r2) = 

1). Note that the links of “like” type is unseen, which means we 

do not see such link at all in training data. 

Most of the link prediction literatures aim at predicting links of 

seen types (i.e., some labeled historical links are observable as the 

training data) [18, 20, 33], thus cannot be applied to our problem. 

Some researchers predict links of unseen types using external 

node group information [15], but those information are not always 

available. As in the Foursquare example, the only available 

information in our problem is the aggregative statistics. 

Nevertheless, our problem is non-trivial due to the following three 

challenges: 
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Figure 1. The unseen-type link prediction with aggregative 

statistics problem in a heterogeneous social network. 
 

 Lack of labeled data. The absence of labeled training data 

prevents us from performing parameter learning in a 

straightforward way. 

 Diverse information. In a heterogeneous social network, the 

information of different types of nodes and links are diverse 

but correlated with each other. A suitable model has to 

carefully model such correlation with aggregative statistics. 

 Sparsity of links. Since the type is unseen, presumably the 

possible candidate-link count approaches O(n2) where n is the 

total number of nodes. When n is large, this can cause serious 

sparsity problem, while finding the links in such a large space 

can be very challenging. 

In this paper, we try to address these challenges by proposing a 

novel unsupervised probabilistic graphical model. First, we devise 

a factor graph model with three layers of random variables 

(candidate, attribute, and count) to infer the existence of unseen-

type links. Second, we define three types of potential functions 

(attribute-to-candidate, candidate-to-candidate, and candidate-to-

count) to integrate diverse information into the factor graph model. 

Third, we design a ranked-margin learning algorithm to 

automatically tune the parameters using aggregative statistics. 

Finally, we design a two-stage inference algorithm to update the 

candidate-to-count potential functions, and calculate the 

prediction results as close to the given aggregative statistics as 

possible. 

The main contributions of this study are as below: 

 We propose and formulate a novel yet practical problem to 

predict the links of unseen-type using aggregative statistics in 

heterogeneous social networks. 

 We devise an unsupervised learning framework to solve the 

above-mentioned problem. Note that the framework we 

proposed can be exploited not only for probabilistic graphical 

models, but for all kinds of general situations where only 

aggregative statistics are available for learning. 

 We evaluate our method on four diverse scenarios using 

different heterogeneous social network datasets: preference 

prediction (Foursquare), repost prediction (Twitter), response 

prediction (Plurk), and citation prediction (DBLP). We also 

apply nine unsupervised models for this problem as baseline. 

Our model not only wins in all scenarios, but also achieves on 

the average 9.90% AUC and 12.59% NDCG improvement 

over the best comparison methods. 

2. PROBLEM FORMULATION 
We start by formulating the problem. 

Definition 1. Heterogeneous social network N = ( V, E, ΩV, ΩE ) 

is a directed graph, where V is a set of nodes, ΩV is a set of node 

labels, ΩE is a set of link labels, and E ⊆ V×  ΩE × V is a set of 

links. 

The function type(v) → lV maps node v onto its node label lV ∈ ΩV. 

Similarly, given a triplet < source, link-label, target > as a link, 

the function type(e) → lE maps link e onto its link label lE ∈ ΩE. 

For the example shown in Figure 1, there are 7 nodes and 7 links, 

with ΩV = { “user”, “item”, “category” } and ΩE = { “be-friend-

of”, “own”, “belong-to” }. For brevity, we denote U ⊆ V as the set 

of node for type = “user”, R ⊆ V for type = “item”, and C ⊆ V for 

type = “category”. 

The relationship between node labels and link labels can be 

enumerated. For instance, a user u may “be-friend-of” another 

user v (i.e., < u, “be-friend-of”, v >); a user u may “own” an item r 

(i.e., < u, “own”, r >), and an item r may “belong-to” a category c 

(i.e., < r, “belong-to”, c >). 

It should be noted that the number of items, |R|, is equivalent to 

the total number of “own” links, and is also equivalent to the total 

number of “belong-to” links (i.e., each item can only be owned by 

one user, and can only belong to one category). 

Definition 2. Unseen-type links is a set of links with a special 

type “?”; links of such type do not appear in a given 

heterogeneous social network. That is, unseen-type links Φ = { φ | 

φ = < source, “?”, target >, type(source) ∈ ΩV, type(target) ∈ ΩV, 

“?” ∉ ΩE }. 

For the example in Figure 1, the unseen-type links denote the 

“like” behavior. That is, Φ = { < u, “like”, r > } denotes the set of 

links that user u likes item r. We use < u, r > to denote the 

candidate pairs of unseen-type links, and there are |U| ∙ |R| = 6 

plausible candidate pairs in Figure 1. 

Definition 3. Aggregative statistic is the total unseen-type link 

count of a target node. In other words, the aggregative statistic of 

a node v ∈ V is σ(v, Φ) = | { φ | φ = < source, “?”, target > ∈ Φ, 

target = v } |, which is a non-negative integer. 

In our example, the aggregative statistic of an item r2 ∈ R is σ(r2, 

Φ) = | { φ | φ = < u, “like”, r > ∈ Φ, r = r2 } | = 1. 

Definition 4. Aggregative statistics for heterogeneous social 

network T(N, Φ) = { < v, σ(v, Φ) > | v ∈ V } is the set of 

aggregative statistics of the unseen links for a heterogeneous 

social network N. 

In Figure 1, the aggregative statistics for heterogeneous social 

network N is T(N, Φ) = { < r1, 2 >, < r2, 1 >, < r3, 1 > }. 

Based on above definitions, we formulate the unseen-type link 

prediction with aggregative statistics problem as follows: given a 

heterogeneous social network N and corresponding aggregative 

statistics T(N, Φ), predict the existence of unseen-type links Φ.  

The relational schema for our example is shown in Figure 2: given 

the heterogeneous social network (3 types of nodes and 3 types of 

edges) and aggregative statistics of “like”, predict whether each < 

u, “like”, r > exists or not, where u ∈ U and r ∈ R. 
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Figure 2. Relational schema of the unseen-type link prediction 

with aggregative statistics problem shown in Figure 1. 

3. METHODOLOGY 
In the first subsection, we propose to solve this problem using a 

probabilistic model. Then, we use an illustrative example to 

demonstrate our model. Finally, we describe a novel learning 

algorithm utilizing the aggregative statistics to learn the model 

parameters, as well as a two-stage inference algorithm to predict 

unseen-type links. 

3.1 Factor Graph Model with Aggregative 

Statistics (FGM-AS) 
To handle this problem, we propose a novel probabilistic 

graphical model: factor graph model with aggregative statistics 

(FGM-AS), as shown in Figure 3. There are three layers of 

variables in FGM-AS: 

 Candidate: the binary random variables Y in the candidate 

layer represent all unseen-type links to be predicted. They 

either exist (positive) or not exist (negative). Each candidate yi 

can be regarded as a pair of user and item, < u, r >. Also note 

that some y’s might point to the same users while some might 

share the same item. 

 Attribute: the random variables A in the attribute layer carry 

attribute information (e.g., a1 represents the degree of the 

source node and a2 represents the degree of the target node) of 

the candidate links. 

 Count: the random variables T in the count layer encode the 

aggregative statistics of the items. Note that t is a one-to-one 

mapping of an item r, but a one-to-many mapping of y 

because there are some y’s sharing the same item (e.g., 

candidate y1 and y2 point to the same t1 as they have the same 

item r). 

Together with the random variables, we also propose three types 

of potential functions: 

 Attribute-to-candidate functions: we define this type of 

potential function as a linear exponential function 

1
( , ) exp{ '( , )}i if A y f A y

Z

                     (1) 

where f’(A, yi) is a vector of functions representing the 

associations between a candidate and its attributes (see 

subsection 3.2.1 for a detailed example), α is a vector of the 

corresponding weights, and Zα is a normalization factor. Note 

that each candidate y can connect to multiple attributes. 

f(A, yi)
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a1 a3a2
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Figure 3. Factor graph model with aggregative statistics 

(FGM-AS) 

 Candidate-to-candidate functions: this type of potential 

function is defined as 

1
( , ) exp{ '( , )}i ig Y y g Y y

Z

                      (2) 

where g’(Y, yi) is a vector of functions representing the 

relationships between candidate random variables (see 

subsection 3.2.2 for a detailed example), β is a vector of 

weights, and Zβ is a normalization factor. 

 Candidate-to-count functions: this type of potential function 

is defined as 

1
( , ) exp{ '( , )}i ih T y h T y

Z

                     (3) 

where h’(T, yi) is a vector of functions representing the 

constraints of aggregative statistics (see subsection 3.2.3 for a 

detailed example), γ is a vector of weights, and Zγ is a 

normalization factor. To be more precise, this type of potential 

functions adhere to the following condition: the sum of 

predicted marginal probability of the candidate random 

variables of each item should be as close to the total count of 

that item as possible. 

According to the FGM-AS model, when the candidates, attributes 

and counts are known, we can define the joint distribution as 

( , , ) ( , ) ( , ) ( , )i i i

i

P A T Y f A y g Y y h T y                   (4) 

Therefore, the marginal probability of candidate random variable 

yi being positive (e.g., like) is 

( , , , ) ( , , , ), / { }i j j i

j

P A T Y y P A T Y y y Y y                (5) 

The marginal probability P(A, T, Y, yi = 1) is the desired output in 

our problem, as it tells us for yi = < u, r >, how likely u likes r. 

3.2 An Illustrative Example of FGM-AS 
We believe that FGM-AS is a general graphical model for solving 

the unseen-type links prediction problem. The three layers of 

random variables and the three types of potential functions can be 

flexibly defined for different application context. Here we use 

FGM-AS to predict whether a user likes an item or not. Figure 4 

illustrates an example of FGM-AS, which is built from the 

heterogeneous social network shown in Figure 1. The three layers 

of random variables are defined as: 
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Figure 4. An example of FGM-AS based on Figure 1's network. 

 Candidate: candidate random variables Y = { yi | i = 1, 2, …, 

|U| ∙ |R| } represent the set of plausible links < u, r > to be 

predicted. In other words, each pair yi = < u, r > indicates 

whether the user u likes the item r. For example, y1 = < u1, r1 

> represents whether user u1 likes item r1. Note that u1 is not 

necessarily the owner of r1. 

 Attribute: attribute random variables A = U ∪ R ∪ C contain 

three groups of information: users U = { u1, u2, …, u|U| }, 

items R = { r1, r2, …, r|R| }, and categories C = { c1, c2, …, 

c|C| }. We use u(yi) to denote the corresponding user, r(yi) to 

denote the corresponding item, and c(yi) to denote the 

corresponding category of yi. 

 Count: count random variables T = {t1, t2, …, t|R| } represent 

the aggregative statistics (total like count) of each item. Note 

that |T| = |R| because t is a one-to-one mapping of r. We use 

t(yi) to denote the corresponding count of yi. 

The design of the three potential functions is described in the 

following three subsections. 

3.2.1 Attribute-to-Candidate Function 
According to Equation (1), we define f’(A, yi) = < fUF(u(yi)), 

fIO(u(yi), r(yi)), fCP(c(yi)) >. The functions fUF, fIO and fCP are based 

on user friendship, item ownership, and category popularity, 

which are defined below: 

 User friendship (UF) function: fUF(u(yi)) = the number of 

friends of u(yi). The intuition behind UF is that we believe the 

number of friends of a user can influence his / her tendency to 

like an item. In Figure 1, fUF(u(y1)) = fUF(u1) = 1, because user 

u1 has only one friend (which is u2). 

 Item ownership (IO) function: fIO(u(yi), r(yi)) = 1 if r(yi) is 

owned by u(yi), otherwise 0. The intuition behind IO is that 

we believe whether a user likes an item or not depends 

significantly on whether this item is owned by this user. In 

Figure 1, fIO(u(y1), r(y1)) = fIO(u1, r1) = 1, because u1 owns r1. 

 Category popularity (CP) function: fCP(c(yi)) = the number 

of items in the whole dataset that belongs to the same category 

as c(yi). The intuition behind CP is that users tend to like 

items belonging to a hot category (i.e., category which 

contains many items). In Figure 1, fCP(c(y1)) = fCP(c1) = 2, 

because there are two items belonging to c1. 

3.2.2 Candidate-to-Candidate Function 
According to Equation (2), we define g’(Y, yi) = < Σ j gOI(yi, yj), Σ j 

gFI(yi, yj), Σ j gOF(yi, yj), Σ j gCC(yi, yj) >, yj ∈ Y / {yi}. The functions 

gOI, gFI, gOF and gCC are based on owner, friend, owner-friend, and 

co-category relationships, which are defined as follows: 

 Owner-identification (OI) function: gOI(yi, yj) = 1 if < u(yi), 

“own”, r(yi) > ∈ E, < u(yj), “own”, r(yj) > ∈ E, and u(yi) = 

u(yj); otherwise 0. The intuition is that an owner tends to like 

all his / her items. For example in Figure 1, u1 likes both r1 

and r2, because u1 owns both items. Therefore, there will be a 

relation between y1 and y4 in Figure 4. 

 Friend-identification (FI) function: gFI(yi, yj) = 1 if < v, 

“own”, r(yi) > ∈ E, < v, “own”, r(yj) > ∈ E, u(yi) = u(yj), and v 
∈ friend(u(yi)); otherwise 0. The intuition is that a person may 

like friend’s items. For example, u2 likes both r1 and r2, 

because u2’s friend u1 owns both items. Therefore, there will 

be a relation between y2 and y5. 

 Owner-friend (OF) function: gOF(yi, yj) = 1 if < u(yi), “own”, 

r(yi) > ∈ E, r(yi) = r(yj), and u(yi) ∈ friend(u(yj)); otherwise 0. 

The intuition is that if an owner likes his / her own item, his / 

her friends tend to like the item too. For example, if u1 likes 

his / her item r2, then his / her friend u2 tends to like r2 as well. 

In other words, there will be a relation between y4 and y5. 

 Co-category (CC) function: gCC(yi, yj) = 1 if < u(yi), “own”, 

r(yi) > ∈ E, u(yi) = u(yj), and c(yi) = c(yj); otherwise 0. The 

intuition is: the extent an owner likes the item will be similar 

to the extent of the owner likes other items in the same 

category. For example, if u1 tends to like item r1, then u1 may 

also like r3, because r1 and r3 are in the same category c1. 

Thus, there is a relation between y1 and y3. 

3.2.3 Candidate-to-Count Function 
According to Equation (3), we define h’(T, yi) = < hCT(yi, t(yi)) >. 

The function hCT is defined as: 

, ( ) ( )

( ) ( , , , 1)

( , ( )) 1
| |

j j i

i j

y Y r y r y

CT i i

t y P A T Y y

h y t y
U

 

 

 


      (6) 

The summation term in Equation (6) sums up all the probabilities 

of a certain item r(yi) being liked by each user, which we hope to 

be as close to the observed “like” count of this item as possible. 

Thus, the difference of this term and t(yi) represents how close the 

prediction to the known aggregative statistics is. We divide this 

difference by |U| for normalization purpose. Ideally, the difference 

is 0, and thus hCT(yi, t(yi)) = 1. Also, 0   hCT(yi, t(yi))   1. 

It should be noted that P(A, T, Y, yj = 1) are not random variables 

anymore but the posterior probability of them. Therefore, the 

conventional exact or approximated inference methods cannot be 

applied directly. To update accordingly, we design a two-stage 

inference algorithm, which is described at the end of section 3.3. 



3.3 Ranked-Margin Learning for FGM-AS 
The key factor that contributes to the success of FGM-AS lies in 

the algorithm’s capability of learning the parameters without 

labeled data. Here we discuss the main idea. Given a parameter 

configuration θ = (α, β, γ) and based on Equation (1) – (4), the 

joint probability P(A, T, Y) can be written as 

 
1

( , , ) exp ( '( , ), '( , ), '( , ))i i i

i

P A T Y f A y g Y y h T y
Z

   

   
1 1

exp ( ) expii
s y S

Z Z
                       (7) 

where all potential functions for a yi is written as s(yi) = < f’(A, yi), 

g’(Y, yi), h’(T, yi) >, Z = Zα Zβ Zγ, and S = Σ i s(yi). 

Now, we will discuss how to learn the parameters of the model. 

Traditionally the idea of maximum-likelihood estimation (MLE) 

can be exploited and algorithms such as EM can be applied to 

achieve this goal. Alternatively for a factor graph, algorithms such 

as gradient decent can be exploited to greedily search in the 

parameter space. However, in our scenario, the absence of labels 

eliminates the possibility of exploiting MLE strategy for learning. 

Moreover, even if one can somehow come up with certain 

approximated objective to be maximized in the M-step of EM, the 

total number of hidden variables in this graph grows to |U| ∙ |R|, 

which can lead to very high computational cost for models such as 

EM or other sampling methods for parameter learning. 

To effectively and efficiently perform the learning task, we 

propose a novel idea to maximize the ranked-margin of the 

instances, incorporating the aggregative statistics into the 

objective function. The intuition is to assume the count for an 

item r(yi) is t(yi), which means that among all candidate users, 

only t(yi) of them like this object. 

Therefore, during learning we want to adjust the parameter so that 

the top t(yi) users have very high probabilities of liking this item 

while the rest have very low probabilities of liking it. To realize 

this idea, we propose to do the following. For each item r, first 

rank each user ui based on the marginal probability of y = < ui, r >. 

Then, let P(Yr
upper) be the average positive marginal probabilities 

for the top t(yi)
th candidate pairs, and P(Yr

lower) be the average 

marginal probabilities for the rest of the candidate pairs, for all yi 

of which r(yi) = r. Finally, given t(yi), we want to adjust the 

parameters to maximize 

( ) ( ) ( )margin upper lower

r r rDiff Y P Y P Y                       (8) 

An extreme example is that the marginal probability of the top t(yi) 

candidate pairs are all 1, while the rest are all 0. In this case 

Diff(Yr
margin) = 1 – 0 = 1. Another extreme example is the opposite, 

which results in Diff(Yr
margin) = -1. Thus, -1   Diff(Yr

margin)   1. 

Based on the above idea and Equation (8), we define the log-

likelihood objective function to be maximized as 

( , ) log ( ) log ( )upper lower

r rO r P Y P Y    

   
1 1

log exp log exp
upper lower

r rY Y

S S
Z Z

       

   log exp log exp
upper lower

r rY Y

S S                       (9) 

 

Algorithm 1. Ranked-margin learning algorithm. 

Besides the intuitiveness of Equation (8) with respect to the count 

as mentioned, there are two other advantages of using Equation (9) 

as our objective function. First, it should be noted that computing 

the normalization factor Z in Equation (7) is very time-consuming. 

But by using Equation (9), we can essentially eliminate Z to avoid 

the high computational cost during learning. Second, the gradient 

of Equation (9) can be obtained through sampling using any 

inference algorithm (as shown below). 

To maximize the objective function, we exploit an idea similar to 

the Stochastic Gradient Descent (SGD) method, as shown in 

Algorithm 1. We calculate the gradient and update the parameters 

for each item iteratively until convergence, then move on to the 

next item (η is the learning rate of our algorithm). The gradient 

for each parameter θ and item r is 

log exp{ } log exp{ }
( , ) upper lower

r rY Y

S S
r

 


 

 
    
   

 

 
 

exp{ } exp{ }

exp{ } exp{ }

upper lower
r r

upper lower
r r

Y Y

Y Y

S S S S

S S

 

 

   

 
 

 

 
 

( ) ( )upper lower
r rP Y P Y

S S
 

 E E                                        (10) 

where 
( )upper

rP Y
S


E and 

( )lower
rP Y

S


E are two expectations of S. The 

value of S can be obtained naturally using approximated inference 

algorithms, such as Gibbs Sampling or Contrastive Divergence. It 

should be noted that the proposed ranked-margin algorithm can be 

exploited not just for graphical model, but also for other learning 

models as long as the gradient of the expected difference can be 

calculated. 

In Algorithm 1, we need to perform an inference algorithm on the 

factor graph, to obtain the marginal probability of each candidate 

pair y. Also, after the parameters are learned, we need to apply the 

inference algorithm again to compute the marginal probability, 

representing how likely the person likes the item. Unfortunately, 

such inference cannot directly be done as P(A, T, Y, yi = 1) in 

Equation (6) requires the posterior probabilities of y. 

Input: FGM-AS, learning rate 𝜂 

Output: P(A, T, Y, yi = 1) for all yi ∈ Y 

Initialize all elements in parameter configuration θ = 1 

repeat 

     Run inference method using current θ to obtain P(A, T, Y, yi = 1) 

     Compute potential function values S according to Eq. (1) – (7) 

     foreach r ∈ R do 

          Compute gradient 
( , )O r






 using S according to Eq. (10) 

          θ = θ + 𝜂 
( , )O r







 

     end 

until convergence 



 

Algorithm 2. Two-stage Inference algorithm. 

Thus, we design a two-stage inference algorithm (Algorithm 2). In 

the first stage, we perform general inference method using f(A, yi) 

and g(Y, yi) only (by assigning all h(T, yi) = 1) to initialize P(A, T, 

Y, yi = 1). In the second stage, we compute h(T, yi) using P(A, T, Y, 

yi = 1), and then perform inference one more time. This way, we 

integrate the posterior information into the inference process. 

4. EXPERIMENTS 
Here we want to verify the generalization of our model by testing 

whether it can be applied to dataset in four different scenarios. We 

also want to verify the usefulness of the potential functions. 

4.1 Scenarios and Datasets 
We study the following four types of scenarios of the unseen-type 

link prediction problem, each with a real-world publicly available 

dataset. The statistics of the datasets are shown in Table 1. 

 Preference prediction. In location-based social network 

services, we are interested in predicting whether users will 

like a tip of venue (i.e., add the tip into their to-do list). We 

extract the social network website Foursquare as the dataset 

for evaluation and consider to-do as the unseen-type link. We 

select all venues located in New York, collect all tips for these 

venues, and identify users who posted the tips. We regard 

venues as categories, and tips as items. Note that due to the 

privacy policy in Foursquare, only the total to-do count of 

each tip is revealed. There is very limited number (i.e., 15,758) 

of unseen-type links revealed, which become ground truth for 

evaluation (not seen in training). 

 Repost prediction. In social network websites, we are 

interested in predicting whether users will re-blog or retweet a 

post. Therefore, we use Twitter as the dataset, which is 

collected from [7]. Twitter is one of the most famous micro-

blog website, and has been used to verify several models with 

different purposes [7, 8, 24]. In this study, we consider 

retweet as the unseen-type link. We keep users who have two 

or more friends, and have tweeted or retweeted more than 

once. Then, we perform stemming to identify 100 most 

popular terms in tweets as categories while each tweet is 

regarded as an item. For example, if a user v posts a tweet r, 

and later another user u retweets this tweet (with the “RT@” 

keyword), we consider an unseen-type link exists from u to r. 

 Response prediction. In micro-blog services, we are 

interested in predicting whether users will respond to a post. 

We use Plurk dataset in this scenario. Plurk is popular micro-

blog service in Asia with more than 5 million users, and has 

Table 1. Statistics of the datasets 

Property Foursquare Twitter Plurk DBLP 

Node 

User 71,634 69,026 190,853 102,304 

Item 180,684 55,375 352,376 221,935 

Category 16,961 100 100 100 

Total 269,279 124,501 543,329 324,339 

Link 

Be-friend-of 724,378 21,979,021 2,151,351 245,391 

Own 180,684 55,375 352,376 221,935 

Belong-to 180,684 55,375 352,376 221,935 

Unseen 15,758 79,918 804,404 123,479 

Total 1,101,504 22,169,689 3,660,507 812,740 
 

Table 2. Mapping of the random variables for the datasets 

Random Variable Foursquare Twitter Plurk DBLP 

Candidate y To-do Retweet Response Citation 

Attribute 

u User User User User 

r Tip Tweet Message Paper 

c Venue Term Topic Keyword 

Count t 
To-dos 

per tip 

Retweets 

per tweet 

Responses 

per message 

Citations 

per paper 
 

been used in studies of diffusion prediction [13], diffusion 

model evaluation [12], and mood classification [2]. This 

dataset is collected from 01/2011 to 05/2011. In this study, we 

consider response-to-message as the unseen-type link. We 

manually identify the 100 most popular topics as categories, 

and regard messages as items. For example, if a person v posts 

a message r, and later another person u responds to this 

message, we consider an unseen-type link exists from u to r. 

 Citation prediction. In academic indexing and searching 

services, we are interested in predicting whether researchers 

will cite a paper. Therefore, we use DBLP [17] dataset 

collected from ArnetMiner [26], version 5. In this study, we 

consider citation-to-paper as the unseen-type link. We first 

perform stemming, and then identify the 100 most popular 

terms-in-titles as categories, and regard papers as items. For 

example, if a researcher v published a paper r, and later 

another researcher u cites r, we consider an unseen-type link 

exists from u to r. Also, we consider two researchers as friend 

if they have been co-authors of at least one paper in the past. 

The mapping of the information in the four abovementioned 

datasets to the random variables in FGM-AS is shown in Table 2. 

Note that in the above four datasets (Foursquare, Twitter, Plurk, 

and DBLP), we hide all unseen-link information as ground truth 

to evaluate our proposed framework. Also note that we obfuscate 

personal information in all of the datasets.  

It should be noted that the unseen-type links used as ground truth 

are actually sparse comparing to all nodes and relations. For 

example, in Twitter dataset, the unseen-to-candidate ratio, 

|Unseen| / ( |User| ∙ |Item| ), is merely 0.00002. Thus, predicting 

unseen-type links for these datasets is a very challenging task. 

4.2 Comparison Methods 
We use nine unsupervised model for comparison. The first three 

methods are single attribute-to-candidate functions: UF, IO, and 

CP. Another six methods are as follows (note that all methods are 

computed on the whole heterogeneous social network): 

Input: FGM-AS, parameter configuration θ 

Output: P(A, T, Y, yi = 1) for all yi ∈ Y 

Initialize all yi = 0, all h(T, yi) = 1 

stage 1 

     Calculate f(A, yi) and g(Y, yi) according to Eq. (1), (2) 

     Run an inference method using θ to obtain P(A, T, Y, yi = 1) 

stage 2 

     Calculate h(T, yi) using P(A, T, Y, yi = 1) according to Eq. (3), (6) 

     Run an inference method using θ to obtain final P(A, T, Y, yi = 1) 



 Betweenness Centrality (BC). This method is used to 

measure an edge's importance in a network. The BC value of 

an edge equals to the number of shortest paths from all nodes 

to all others that pass through that edge. For each candidate 

pair, we add a pseudo unseen-type link in network. Then, we 

generate BC values of pseudo links as their prediction scores. 

 Jaccard Coefficient (JC). This method is used to directly 

compute the relatedness of an user u to an item r, which is 

defined as | neighbor(u) ∩ neighbor(r) | / | neighbor(u) ∪ 

neighbor(r) |. This score is used to predict whether u likes r. 

 Preferential Attachment (PA). This method bases on an 

assumption that popular users tends to like popular items. 

Therefore, it is defined as | neighbor(u) | ∙ | neighbor(r) |, 

which is used as the prediction scores. 

 Attractiveness (AT). This method is designed to compute 

user-to-user attractiveness using aggregated count [32]. We 

transform it to predict unseen-type links. It first computes 

owner-item attractiveness Pvr from owner v to item r as 

( ') ( )

( , )

( ', )
vr

c r c r

r
P

r










                            (11) 

where Φ is the set of “like” links, and σ(r, Φ) is the 

aggregative statistic of item r, as defined in Section 2. Then, it 

compute the user-owner attractiveness Puv from user u to v as 

1 ( (1 ))uv uv vr

r

P g P                            (12) 

where guv = 1 if u and v are friends, otherwise 0. To perform 

link prediction, we further compute user-item attractiveness 

Pur (the probability of user u likes item r) as 

ur uv vrP P P                                   (13) 

 PageRank with Priors (PRP). This method executes 

PageRank algorithm [31] for |R| times, once for each item. For 

specific item r, we set the prior of the item node to 1, and 

priors of all other nodes to 0. Thus, the probability of user u 

likes item r is modeled using PageRank score of the user node 

u. We set the random restart probability as 0.15. 

 AT-PRP. We combine the Attractiveness and PageRank with 

Priors methods by using the weight of the links. That is, in the 

heterogeneous social network, we add a link for each< u, r > 

pair, with weight equals to Pur. We then normalize all weights 

of outgoing links to sum up to 1, and run PageRank with 

Priors as mentioned above. 

4.3 Settings 
Because of the sparsity of unseen-links in ground-truth, we use 

Area Under ROC Curve (AUC) [5] [19] and Normalized 

Discounted Cumulative Gain (NDCG) [10] to evaluate our 

proposed method. For each item, we rank all the candidate pairs 

based on their predicted positive marginal probabilities, and then 

compare the rankings with the ground-truths to obtain AUC and 

NDCG scores. Finally, we average the scores over all items. 

We select Loopy Belief Propagation (LBP) as our base inference 

method [23], utilize MALLET [21] for LBP inference, and apply 

LingPipe [1] for stemming. We use JUNG [22] to compute 

betweenness centrality and PageRank with Priors algorithms. 

Table 3. Experiment results of our framework (FGM-AS) and 

all comparison methods (in percentage). 

Method 
Foursquare Twitter Plurk DBLP 

AUC NDCG AUC NDCG AUC NDCG AUC NDCG 

UF 76.74  21.66  73.49  18.87  71.08  35.01  70.28  25.07  

IO 81.31  51.60  69.98  18.93  69.86  35.33  68.51  23.84  

CP 74.03  20.56  67.38  17.15  70.69  36.13  69.52  24.22  

BC 67.01  21.26  67.65  18.97  69.81  31.47  64.17  21.10  

JC 64.30  26.75  65.65  21.05  70.05  35.40  69.96  28.24  

PA 72.28  27.09  62.30  16.39  67.42  32.68  71.41  26.12  

AT 82.57  44.54  76.95  20.28  69.62  39.29  70.95  28.48  

PRP 57.27  17.93  62.41  16.56  69.12  33.64  61.83  21.25  

AT-PRP 71.06  22.38  68.17  18.11  70.99  36.03  67.86  24.27  

INFER 86.77  70.60  79.11  24.80  74.23  40.24  86.84  41.75  

LEARN 98.61  80.44  81.29  25.87  74.42  42.61  87.29  41.84  

Improve 16.04  28.84  4.34  4.82  3.34  3.32  15.88  13.36  
 

In FGM-AS, we set all zero potential function values to a small 

constant (0.000001), and use learning rate η = 0.0001. We run all 

experiments on a Linux server with AMD Opteron 2350 2.0GHz 

Quad-core CPU and 32GB memory. 

4.4 Results 
The results of different methods using AUC and NDCG are 

shown in Table 3. The LEARN method is to exploit Algorithm 1 

to perform learning and Algorithm 2 for inference, while INFER 

is to exploit Algorithm 2 for inference without learning. In all 

cases, LEARN performs best. Note that INFER outperforms all 

baselines, and LEARN provides further improvement than INFER. 

Averaging over the four datasets, our framework (LEARN) are 

9.90% AUC and 12.59% NDCG better than the best comparison 

methods. LEARN achieves best result for Foursquare dataset, 

with improvement of 16.04% in AUC and 28.84% in NDCG. 

From Table 3, we see that the performance distinction between 

the three attribute-to-candidate functions, UF, IO, and CP, varies 

depending on the dataset used. We believe that these three 

functions are complementary to each other, and can be ensemble 

to contribute to our integrated framework. BC does not work well 

in all experiments, JC performs well for Twitter in terms of 

NDCG, and PA performs well for DBLP in terms of AUC. On the 

other hand, AT is in general the strongest comparison method 

(performs best among comparison methods in both metrics for all 

four datasets); PRP in general does not perform well; AT-PRP 

ranks just between AT and PRP. Our framework consistently 

outperforms these comparison methods significantly. Based on the 

above experiment results, we believe our framework can be a 

general method to solve the unseen-type link prediction problem. 

4.5 Candidate-to-Candidate Verification 
In previous subsection, we evaluate the attribute-to-candidate 

functions and compare them to our proposed framework. However, 

the candidate-to-candidate functions cannot be evaluated 

independently (i.e., without attribute-to-candidate functions). 

Therefore, we verify the feasibility of the four functions, namely 

OI, FI, OF, and CC, by performing a simple analysis in our 

datasets. First, we set all “own” links as “like” links. As shown in 

Figure 1, we set < u1, “like”, r1 >, < u1, “like”, r2 >, and< u2, “like”, 

r3 >, as positive prediction. Then, we apply the above four 

candidate-to-candidate functions to extend the predicted links. 



Table 4. Verification results of candidate-to-candidate 

functions (in percentage), Pre. = precision, Rec. = recall. 

Function 
Foursquare Twitter Plurk DBLP 

Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. 

OI 2.14  37.50  0.00  0.00  0.00  0.00  0.00  0.00  

FI 0.33  55.00  0.00  0.00  3.25  33.55  1.53  60.68  

OF 0.35  40.00  0.21  20.00  3.23  37.31  1.53  60.68  

CC 0.20  2.50  0.74  20.00  1.36  18.76  2.64  86.65  

All 0.48  95.00  0.31  40.00  2.02  51.43  1.64  94.66  
 

For example, considering OF function, there will be a link 

between < u1, “like”, r2 > and < u2, “like”, r2 >. Because < u1, 

“like”, r2 > is positive (i.e., it is originally an “own” link), we 

predict < u2, “like”, r2 > as positive based on OF. 

We compare the result of candidate-to-candidate functions using 

precision and recall with the unseen-type links in ground-truth, as 

shown in Table 4. We also ensemble the four functions and 

examine the effectiveness of the combination (the All row). All of 

the candidate-to-candidate functions has low precision (less than 

4%), but have some extend of recall (especially All). For 

Foursquare and DBLP datasets, the recall of All reaches as high as 

95.00% and 94.66%, respectively. It should be noted that OI 

performs bad for Twitter, Plurk and DBLP datasets, but provides 

some improvement for Foursquare dataset. On the other hand, FI 

seems to be of little use for Twitter dataset, but it does provide 

information for other three datasets. Therefore, we regard these 

four candidate-to-candidate functions as complementary to each 

other, and can be ensemble to contribute to our framework. 

5. RELATED WORK 
In this section, we discuss some of works related to unsupervised 

unseen-link prediction framework using aggregative statistics. 

5.1 Link Prediction 
Our problem is effectively link prediction in heterogeneous social 

network. Link prediction is a well-studied task in social network 

analysis, and is characterized by graph topology, testing how 

proximal nodes are to each other [18]. Many features have been 

tested and developed for homogeneous network, using different 

graph topological properties [20]. However, such approaches do 

not consider the sparsity and diversity of heterogeneous social 

network. Feature design for heterogeneous social network was 

recently explored [33], casting as a supervised learning task [14]. 

One area of research interest is to predict actual popularity of a 

microblog (e.g., tweet) in a social media. In this case, the task is 

formulated as a supervised learning problem, where it can be 

binary (e.g., whether a tweet will be retweeted or not) or multi-

class (e.g., assign the prediction of how a tweet will be retweeted 

by popularity category) classification problem [8] [24]. Another 

approach applies probabilistic model on social media response 

prediction [35]. This work essentially incorporates collaborative 

filtering accounting user and item (i.e., tweets) features, but still 

require training data. Another related area is to predict the link 

from user to venue (i.e., point of interest recommendation) using 

geographic information [34]. However, such method fails to 

utilize effects of information propagation in social network. 

Regarding unsupervised link prediction, there have been works 

such as cold-start link prediction [15], transfer learning [6], and 

triad census [4]. They are fundamentally different from this work. 

Cold-start link prediction requires category information, and 

works only on homogeneous network. Transfer learning assumes 

another domain of labeled data is available. Triad census does not 

consider the aggregative statistics information in the networks. 

Pure unsupervised heterogeneous social network link prediction 

explores different context of the data by examining 

probabilistically the topological features of the reweighed path [3] 

[33]. However, these works usually predict links between two 

entities of the same type, holding the underlying assumption that 

birds of a feather flock together. Our work tries to predict links 

between two different types (usually users and items) where such 

assumption is not likely to hold. 

5.2 Factor Graph and Max-Margin Learning 
Factor graph [11] is a unified framework for general probabilistic 

graphical models. Recently, factor graphs have been widely 

adopted to resolve various problems [9] [25] [29] [30]. Among 

these applications, factor graphs are suitable for social 

relationship prediction tasks. [29] proposed a time-constrained 

unsupervised probabilistic factor graph (TPFG) to model the 

advisor-advisee relationship using time information. Triad Factor 

Graph (TriFG) model [9] incorporates the factor graph 

representations and social theories over triads into a semi-

supervised model. [25] investigates the relationship prediction 

problem on heterogeneous social networks. Previous attempts are 

extended and integrated into a transfer-based factor graph 

(TranFG) model. However, these methods either need additional 

external information or do not consider the aggregation of 

statistics during computation. 

Several margin-based learning methods on probabilistic graphical 

models have been proposed. Previous methods require the 

ground-truth labels to figure out the proper direction of parameter 

update. For example, [27] formulates the parameter fitting 

problem as a quadratic program and performs Sequential Minimal 

Optimization (SMO) learning to solve the problem. For max-

margin methods solving similar problems such as structural 

support vector machines [28], the ground-truth is also needed to 

fit these models. However, in our problem, it is the aggregative 

statistics instead of the ground-truth labels that are given. 

Therefore, our framework maximizes the ranked-margin instead 

of traditional margin. 

6. CONCLUSION AND FUTURE WORK 
Mining on social networks using incomplete information has 

gained its own value due to its applicability, as in the real world 

we cannot always expect all the information to be observable. In 

this paper, we demonstrate that the unseen-type link prediction 

can be solved using an unsupervised framework through 

exploiting the aggregative statistics. We show how various 

information sources in the heterogeneous social network can be 

modeled all together in a factor graph, propose a novel learning 

algorithm to learn the parameters using aggregated counts, and 

devise an inference algorithm to predict unseen-type links using 

learnt parameters. With such framework, one can now derive 

hypotheses on the individual behavior using the group statistics. 

Especially, under the growing concern of personal privacy 

preservation, we believe our framework provides a mean for 

applications that tries to distill personal preference information 

from the statistics. On the other hand, in the area of biomedicine, 

our framework can be applied to identify novel protein-disease 

relationships, given clinical aggregated observations. 



Future work includes extending the current ranked-margin 

learning framework to other types of models such as discriminant 

classification and clustering. Also, for some networks (e.g., 

Foursquare), the very small amount of observable links may be 

utilized to extend our framework to a semi-supervised setting to 

further improve the prediction accuracy. Our framework can also 

be applied to more application scenarios and networks. Next, 

temporal information may be considered, which further empowers 

our framework to deal with dynamic networks. Finally, our work 

may also be extended to predict positive / negative links (e.g., 

applying methods described in [16]) using aggregative statistics. 
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