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Abstract 

Heterogeneous social network has seen a rapid rise in research and industry 

interest in the widely popularizing online social or information networks, such as 

Twitter, Facebook, or Google Knowledge Graph. Such networks are characterized by 

large-scale of data volume, and the varying multitude of roles that an individual (or 

entity) plays and interacts with other members of the network. Oftentimes, engineers 

that design applications to exploit the wealth of information hidden within the networks 

need to extract parts of the network and semantically similar entities to the target of 

interest via techniques such as crawling. This process faces the challenge that one very 

frequently does not have the permission to access the fully observed graph for network 

services at large.  

This study defines and examines the problem of exploratively searching 

semantically related nodes in heterogeneous social network, under the context of 

specific meta-path semantics dictated by the graph schema of the network. In particular, 

the paper proposes a framework to sequentially crawl entities from the full network, 

where at each stage, the process calculates the expected scores for the candidate nodes 

using metrics that measure meta-path similarity. Moreover, we propose score 

propagation heuristics to facilitate the estimation of such expected scores. Experiments 

on several real world networks reveal that the proposed methods can estimate meta-path 

semantic metrics using little exploration costs across various meta-path semantics. In 

addition, effects on different parameter settings are tested. Lastly, the study explores 

applying sampled nodes to reflect ability to identify group membership and train 

ranking models on attributes alone for metric score prediction. 

Keywords: Social Network Analysis, Heterogeneous Network, Entity Search, Sample by Exploration 
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摘要  

由於網際網路的社群網路服務崛起，異質性社群網路分析近年來在產業界及學界

得到高度的關注。此類網路涵括Twitter, Facebook, 甚或是資料網路如Google的

Knowledge Graph等。這些社群網路通常具有資料量大、及網路中個體有獨特的身

分或特殊的互動狀況等特性。亦即，網路中的點(個體)及邊(互動狀況)代表特定的

種類。在設計特定的應用中，要有效地從這些資料中挖掘出特定的隱藏資訊，工

程師通常需要利用像網路爬蟲的技巧一筆一筆從伺服器中讀取資訊。此類型的應

用的一大挑戰在於，使用者通常無法直接擷取所有網路的相關資訊。在受權限限

制的環境下，如何有效在最小成本中抓取型態相似的個體成為非常重要的課題。 

 

本篇研究主要探討並定義在異質性網路中的擴增性意涵導向個體檢索：給定意涵

路徑(meta-path)跟量度方式，將一步步從完整的網路中抓取相似的個體。此研究提

出一個一般化的解決方案，在每個取樣的步驟時，賦予感興趣的點一個意涵路徑

相似度的期望值，並進行分數權衡過的取樣。此外，將提出 MetaRank，一個網頁

排名的變形，進行期望值的估算。實驗結果於數個現實生活中的社群網路顯示提

出的方法可有效在有限的搜索成本中估算意涵路徑度量的相似度。實驗亦將探討

不同參數的設定。最後，使用附屬屬性來輔助預測模型的建立及擴增性檢索的準

確度驗證此方法的延伸性。 

 

關鍵字：社群網路分析，異質性網路，個體檢索，擴增性取樣 
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Chapter 1 

Introduction 

1.1  Background 

 The widespread hype in online social networks sees an ever-increasing load of data 

that presents practitioners opportunities to tap unlimited potential of deep knowledge. 

However, these new sources of data are no petty beasts to tame: these networks are 

often heterogeneous and dictated by complex semantic structures, which are mainly 

classified as interrelations between individual attributes and inter-person interactions. In 

fact, many notable online social network services can be characterized as heterogeneous 

social networks. Some real-life evidences are exemplary: activity relationships in 

Facebook [2]; different interaction behaviors between users in Youtube [15]; and 

different group memberships across communities in Twitter[8]. Take publication 

network DBLP1 as a clarifying example, where we provide the graph schema in Figure 

1, entities can be authors, papers, etc. Interactions can occur through an author writing a 

paper, a paper citing another paper, etc. The concept of heterogeneous type information 

for nodes and edges in a network adds a new dimension to network topology, and has 

attracted high interest for research and industry practice.  

 To date, typical network analysis relies on topological properties of the graph itself. 

Many works have emphasized on various aspects of graph properties, especially on how 

topological information can be used to cluster communities[5], predict relationships[10], 

                                         
1 http://www.informatik.uni-trier.de/~ley/db/ 
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determine roles of an individual[13], etc. However, until very recently, most works 

stressed little on incorporating structured type information into feature generation or 

data modeling. More popular usage of node type information was on population 

estimation[3] or regarded as only context information, rather than exploring the 

connectivity across graphs between subgraphs of different node types. To go beyond the 

traditional realm of graph analysis, heterogeneous network analysis taps topological 

interactions between nodes of different types by noting that homogeneous network is 

just a projection on information plane from heterogeneous network2. A flurry of works 

on heterogeneous network discusses on issues such as link prediction, clustering, 

network sampling, and similarity search. We take particular interest on the topic of 

similarity entity search within heterogeneous network and the rest of the paper will 

discuss solely on this specific subtopic.  

A particular problem relevant to heterogeneous network is node (entity) similarity 

search. In this problem, we are interested in determining how closely related are the 

nodes of particular types (e.g. the author similar to a particular scholar, or the 

conference that scholar is most likely to take interest in). Generally, searching in 

heterogeneous network provides a merit that users can incorporate semantic information 

directly into the crawler module or the like in their applications. In order to search 

semantically, we need a semantic structure and corresponding metrics to capture the 

similarity between two entity objects. For the generic semantic structure used in the 

search task, we apply the recently proposed meta-path semantics[14]. A meta-path is a 

sequence of node types P = (T1,…TN), denoting how the two entities of types at the ends 

of the sequence (i.e. T1 and TN) are semantically connected in a network. Take Figure 1 

as example, to relate two authors, the paper identifies a common venue where both 
                                         
2 KDD 2012 Summer School, Jiawei Han: http://kdd2012.sigkdd.org/summer_school.shtml#han 
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authors publish paper in. Consider movie network as a different example, where a 

movie may involve actors, directors, production firms, and other various attributes, to 

compare the similarity between two actors, we may be interested in the common 

collaborations with particular director (Actor–Movie–Director-Movie-Actor sequence), 

and this information is often not easily recognizable by movie titles alone. Obviously, 

meta-path presents flexibility towards semantic interpretation between entities. 

 

Figure 1-1. Above Right: An illustration of publication network; Above Left: 
Corresponding graph schema for different node and link types; Below: A meta-path 
semantic relating two objects of node type “Author”. 
 

However, existing works on similarity search in heterogeneous network mainly 

focus on server-side applications: that is, the information of entire network is available 

beforehand. This assumption does not apply to user-side scenarios, as one immediate 
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problem is the limited accessibility of the network. Many online social networks such as 

Facebook do not reveal the complete observed graph, thus making approaches that 

require access of the full network infeasible (such as direct full matrix computation). 

Furthermore, as we need to inquire the server every time the crawler searches, the 

exploration cost comes as an important factor in assessing the quality of the search. 

Another problem is the need to approximate network semantic similarity measures. 

During the search process, only the partial network is revealed to the user, which 

renders faithful computation difficult. An important question is to find out the best way 

to leverage the currently available information to more accurately predict the real 

similar objects of interest.  

With the abovementioned challenges in mind, the following subsection maps out 

the proposed method to cope with the research problem this study faces.  

1.2  Methodology Overview 

 Given a heterogeneous network, a query entity, the node type of the resultant nodes, 

the objective meta-path semantics, and the metric that measures the meta-path semantics 

similarity, we propose to combine the notions of sampling a network by 

exploration[8][12] and retrieving a node set of similar objects (in the sampled network) 

based on the similarity metric dictated by the given meta-path semantics.  

 The major aim of this paper is to design a search framework by exploration that 

extracts the objects of the target node type given only gradually observed information 

through the sampling process. During the sampling process, the framework first 

evaluates the nearby neighbors, then selects suitable candidate nodes, and finally issues 

a request to access a particular candidate’s information. In particular, we wish to 

estimate, based on the currently sampled subgraph, the expected similarity between the 
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query nodes and candidate nodes had we have the fully observed network at hand. We 

select the from the candidate nodes the node that matches our belief of semantic 

similarity the most. 

 Because type information for the unexplored portion of the network is not 

available, we propose to estimate the expected similarity using expected type 

distribution computed using the observed conditional probability between node types 

and link types [16]. Heuristics based on network based score propagation mechanism is 

proposed to incorporate type information to score approximation. We continue to 

sample until a desired number of objects of target node type is gathered. 

1.3  Research Questions and Contributions 

Given the scenario entailed in the proposed methodology, we summarize the 

research contribution of this paper below. 

1. We first define the novel problem of semantic-driven searching entity in a 

heterogeneous social network that has only partially available network 

information, and the generic methodology that bases on sampling by 

exploration that solves the research problem. 

2. Given the context of path-based semantics, as defined by the meta-path 

relation, we propose a method to incorporate currently observed meta-path 

statistics, and our belief of expected likelihood of node type distribution to 

determine how confident we should sample among the candidate nodes. In 

particular, we design a one-iteration mechanism to propagate scores to 

characterize meta-path connections between two nodes.  

3. As for evaluation and experimentation, we test our methodology against 

several sampling baselines across a variety of real-world heterogeneous social 



 

13 

 

networks. We discover that our method is able to retrieve entities of interest 

using few nodes under a set of different meta-path semantics. 

4. Lastly, we check the possible applications of using entity sampling by 

exploration. Scenarios tested on interpretability of our results and retrieval 

accuracy that connects to entity sampling by exploration are discussed. We 

further show model learning can be applied to align node instances with only 

attributes information and semantic similarity with the query. 

1.4  Paper Organization 

The rest of the thesis is organized as follows. Chapter 2 touches on relevant works 

to this work’s research topic. In Chapter 3, we define the necessary preliminary 

background and formal problem definition used in the paper. Chapter 4 introduces our 

proposed framework of sampling and methodology of score estimation. Chapter 5 

shows the experiment settings and implementation details. In Chapter 6, we discuss 

some observations and results that explain the nature of our method’s superiority over 

the competing baselines. Chapter 7 presents some ideas on how the research concept in 

this work can be used to derive interpretable results. Chapter 8 is the conclusion and 

directions for future works.  
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Chapter 2 

Related Works 

 For the problem of similarity search in heterogeneous social network via 

explorative sampling, two crucial components in the search process must be discussed: 

how one expands the answer set by exploring neighbors in the unexplored network, and 

how semantic-driven search of network nodes by traversing the graph topology is 

conducted.  

2.1  Graph Sampling by Exploration 

 There are two main ways to represent the network: graph summarization and graph 

sampling. Graph summarization takes input the whole network and returns a condensed 

version of efficient visualization or processing of the graph[24]. However, as we do not 

have the access to the full network, that leaves us to graph sampling for solutions.   

Representative subgraph sampling selects a subgraph via a choosing strategy. This 

method assumes that the network is only partially available and decisions must base on 

the currently sampled information. Usually, an approximation goal is presented, and the 

sampled graph is to be as close as the full observed network as possible in respect to 

that goal.  

 In the existing literature, some categories of sampling by exploration exist: for 

homogeneous networks, popular methods include sampling by Random Walk 

[1][4][9][17], Forest Fire[7], Ego-Centric Exploration[11], and Multiple Ego-Centric 

Exploration Sampling[8]. In these sampling methods, usually a set of seeds (which 

correspond to a set of node queries) is at first initialized to be the set of ‘egos’. At each 
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stage, the set of egos is maintained, and the sampling step looks at the immediate 

neighbors of the egos for candidate selection. Upon selecting the proceeding node from 

the set of candidate nodes, the ego in consideration is updated to the newly selected 

node. A major drawback for these sampling methods is that inter-type relationship and 

relative weighting for different types are not considered. 

 As for heterogeneous network sampling, [2] proposes a multi-graph approach that 

first decomposes the heterogeneous network into a set of homogeneous ones, each for a 

single type of link. Then for each single-type network, it performs random walk 

sampling before combining results. Again, the projection to homogeneous network falls 

into the same pitfall as homogeneous sampling methods. Two other relevant works 

include using Respondent Driven Sampling[8], and using Relational Profile Preserving 

Sampling[16]. The former approach, however, is not suitable for the task of search by 

exploration, as that research’s aim is to estimate node type distribution using extracted 

subgraph. The latter approach, Relational Profile Preserving Sampling, starts out with a 

proposed network property, Relational Profile, which characterizes the conditional type 

probability distribution between any pair of node types derived from two connecting 

nodes. The selection process depends on how the candidate node fits the objective, or, 

minimizing Relational Profile difference between the sampled and original networks. 

This work bears some resemblance to our study scenario, as we need to assign weight 

according to the node’s implied semantic. We differentiate ourselves in that the 

research’s goal is not the same, leading to disparate scoring strategy. 

2.2  Graph Semantics and Similarity Search 

 To more faithfully capture the characteristics of semantics denoted by a 

heterogeneous social network, structured representation of semantics is introduced. 



 

16 

 

Works that deals with information network usually play with node to node relations 

directly[6]. [20] discusses various aspects of graph schema, and how conditional type 

semantics can be estimated without the full knowledge of graph schema. Graph-denoted 

semantics, which allow type pattern to be structured as graph-like, are used in subgraph 

retrieval[19][21]. Often, these works require the access to a static database of large 

repository of graph patterns in order to mine frequent or similar graph portions that 

match the semantic pattern. One line of work that deals with a particular set of 

semantics is meta-path[14]. Meta-path confines the study of semantics to path 

connections of node types only. Studies reveal that meta-path can be used to derive 

many useful features for link prediction[22], clustering[23], similarity search[18], etc. 

Advantages for using meta-path are that the semantic increases interpretability, and 

simpler path structures are easier to manipulate, through optimization or random 

surfing.  

As meta-path can measure the similarity between two objects based on how 

relevant they are connected according to the dictated semantic path, several measures 

have been tried to see the effectiveness of meta-path metrics on application performance. 

Simple path count, symmetric path count, normalized path count, and normalized 

symmetric count are among the early methods of measuring semantics similarity. 

Recently, a work[14] proposes a new metric, PathSim, that accounts the normalized 

meta-path counts with respect to the count that the end-nodes connecting back to itself. 

In addition, a fast solution to calculating PathSim is proposed using co-clustering to 

deal with large matrices. 

The more general case of similarity search in heterogeneous social network are 

roughly divided into two subdomains. One methodology is to return a connected 

network, often using a variation of Steiner-Tree algorithm to connect query nodes. One 
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exemplary approach is MING[6]. In this framework, a connected subgraph is first 

discovered. Based on this connected subgraph, the algorithm computes the selection 

likelihood of the candidate node based on the probability that any random walker from 

the current subgraph can walk back to the subgraph via the candidate node. Score 

estimation build on the statistics on fact patterns, or the number of pairs of nodes that 

are connected by a particular relation (e.g. a membership relation like ‘IsA’). This 

approach is quite different from our setting, as we are only interested in the set of 

objects in target type, not on how to connect nodes in the subgraph. Another 

methodology returns a set of similar objects of given node type. Unsupervised approach 

directly measures the similarity between two nodes using a given evaluating metric[14]. 

Supervised approach, on the other hand, requires the calculated similarity between two 

nodes of interest (source and target). After generating a list of instances and 

corresponding features, a ranking model is learned[18]. The supervised approach enjoys 

the advantage of feature engineering and objective function setting. However, both 

approaches do not apply in our scenario as we are restrained to acquiring information on 

the fly. A complete, offline database is not available beforehand. 

In summary, there is no existing work that combines both paradigms of sampling 

by exploration and structural semantics in node similarity search in heterogeneous 

network. Our work succeeds in combining these two disparate aspects into solving the 

research problem.  
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Chapter 3 

Problem Definition 

3.1 Background and Terminology 

Given a graph G = (V, E), where V is a set of N vertices (or entities, as we will 

interchangeably apply the term) and E represents a set of M edges (or relations), we 

define a heterogeneous graph as the following: 

 

Definition 3.1: a heterogeneous graph G = (V,E) is a graph, where each node, n, 

can be described by (n, NT(n)) that denotes: node n is of type or category NT(n), where 

a set of node type labels are denoted as NT. Each edge e can be described as a triple (v1, 

v2, ET(e)) that denotes: node v1 and v2 are related by relation ET(e), where edge type 

labels come from a set ET. Also, we use N(v) to denote neighbors of a node v. 

 

 Referring back to the toy example in Figure 1-1, a publication network is clearly 

defined by several crucial entity types. In the network, paper publishes in a journal; 

paper cites other papers; author publishes papers; and author belongs to organizations. 

We can see that the semantic interpretation is almost deterministically described. 

 Also we take note of the notion of graph schema: a graph schema is a 

visualization of how a heterogeneous graph G is characterized by node type semantics 

NT and edge type semantics ET. In a graph schema, two node types nt1, nt2 are 

connected if and only if there exists edges in G that creates a path connecting two nodes 

(n1, n2) by types (nt1, nt2) respectively.  
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 While edge type and node type can give intuitive and direct explanation to certain 

characteristics in a network, in order to describe higher-order semantics, we formally 

define structure semantics, meta-path, below: 

  

 Definition 3.2: a meta-path P = (T1,…,TN) of N entity types (each Ti is a specific 

node type in NT) is a structural semantics where P denotes valid paths that relates two 

objects of types T1 and TN following the defined type connections. We call a string of 

nodes (entities) in G, (n1,…,nN) to be a match of meta-path P iff NT(n1): = T1, 

NT(n2):=T2,…,NT(nN):=TN. 

 

 This definition of meta-path ensures interpretability and reasonability whether the 

given meta-path semantic P pertains to graph G. If P is not a path allowable by the 

corresponding graph schema of G, then searching entities under P would be 

meaningless, or similarity based on P between two nodes of node type T1 and TN will 

always be 0.  

 We shall illustrate how to construe meta-path semantics through real-life example 

derived from the publication network in Figure 1-1. See Figure 3-1 for a set of 

meta-path patterns. For the path (APA), we are comparing similarities between two 

authors that share common paper. An equivalent view of this semantic is the strength of 

co-authorship between two authors. For the path (APCPA), we are interested in this 

case how two authors are connected through publishing papers at common venues. Take 

another path for example, (APC), we compare the similarity between an author and a 

journal venue through common papers. An equivalent interpretation would be how 

often an author publishes a paper at a given venue: the more frequent the author 

publishes, the more preferred the author publishes at a domain relevant to the journal 
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venue. Through these motivating examples, we find that any pair of nodes can be 

correlated by a certain meta-path, regardless whether or not the two nodes are of the 

same type, as long as the meta-path is supported both by the corresponding graph 

schema and human interpretable meanings. 

 

Figure 3-1. A sample of meta-path semantics 
 

 In order to measure the similarity between two nodes according to a particular 

meta-path P, we need a similarity metric 𝕸(x, y)P for actual computation. Some 

existing measures [14] include path count, which computes the number of path 

instances p between x and y following 𝒫, or Random Walk, which measures the 

probability that a random walker starting from x ends with y following meta-path P. 

However, as suggested, in [14], symmetric similarity measure strengthens the belief 

between two nodes and provides better interpretability. We will explain more in detail 

below and use symmetric metrics as the main measures in our study: 

l Symmetric random walk (SRW): this measure further entails that the 

probability requires random walker walking back from y to x, other than 

probability of walking from x to y, leading to the formulation of 𝕸(x, y) = 
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𝑃𝑟𝑜𝑏(𝑃)!∈! , where P = (𝑃!𝑃!): 𝑃! is path from x to y and 𝑃! likewise the 

path in opposite direction. 

l PathSim: PathSim is a measure that further normalizes path count by pairwise 

random walks of the two nodes of interest. The exact computation supposes 

the function 𝕸(x, y) = !∗|{!!→!:!!→!∈!}|
{!!→!:!!→!∈!} !| !!→!:!!→!∈! |

. PathSim shows to have 

consistent performance of the metric over other metrics in interpretability[14]. 

Note that PathSim requires two end-nodes of the same node types to maintain 

certain properties proposed in the prior work.  

We show by example how bi-directional metrics differ in semantic interpretability. 

Consider (APC) in Figure 3-1, 𝕸SRW(x, y) extends the original explanation in that  

random walk probability in C-P-A paths denotes the author is a dominant author at the 

conference (which is different than the A-P-C interpretation).  

Since PathSim is only defined over pairs of nodes with T1 = TN, so we use 

symmetric random walk to relate two nodes of different types in our experiments.  

3.2 Formal Problem Definition 

What we really want to achieve in our study is to return a small list of nodes that is 

the most similar set of nodes to the query node nseed. That is, the sequence S of sampled 

objects under a particular meta-path semantic should have similar scores to the 

top-scored nodes in similarity using the full network. To compare the sampled node set 

S and V, all type TN nodes in the full network, we use the likelihood function ℒ(𝑆,𝑉)P.    

Summarizing all aforementioned notions, we will provide the formal problem 

definition:  

 Given a particular meta-path P, seed node nseed, size of entity set k, desired target 

node type T, and evaluating metric 𝔐(x, y)P, the problem of meta-path semantic 
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preserving entity search in heterogeneous social network is to sample sequentially 

from a heterogeneous network G a set S where |S| = k and NT(S) = T, with the relative 

scores between S and V (V = {n|nt(n) = T, n∈N}), ℒ(𝑆,𝑉)P maximized.  
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Chapter 4 

Methodology 

 Our proposed algorithm bases on the idea of combining explorative sampling and 

meta-path similarity score propagation. In order to solve the formalized problem, we 

must first understand the nature of sampling by exploration to better describe the details 

of the proposed methodology.  

4.1 Sampling by Exploration Framework  

 We briefly describe the process of sampling a set of entities in a heterogeneous 

network by exploration. Given a query seed node nseed, the process is to sample a 

network Gs with a node subset S of target type T, where at each step during sampling, 

the new node nnew to be sampled is selected from the set of candidate nodes CGs, where 

CGs consists all unsampled one-step neighbors of the currently sampled network. As a 

new node is sampled with respect to Gs based on its immediate neighbors, we want to 

determine argmaxS  ℒ(𝑆,𝑉)P. However, to determine this set, we need to try out all 

possible combinations of node subsets, which is computationally intractable as the 

number of possible candidate sets grow exponentially large. To improve the efficiency, 

here an explorative sampling framework is defined as:  

∀𝑣 ∈ 𝐶!", 𝑃 𝑛!"# = 𝑣 ∝ ℱ 𝑣,𝐺! ! = 𝑎𝑟𝑔𝑚𝑎𝑥!!!!ℒ(𝑆!!!  ,𝑉)P 

where 𝐺!! = 𝐺! + 𝑣. The above equation essentially says the probability of a node to be 

selected as the next candidate to be sampled is proportional to the normalized score 

function ℱ  that represents how well including this node into the existing network can 
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match the desired semantics P. The process is shown in Algorithm 1.   

 

 This process addresses the problem of limited accessibility of the network. We are 

only granted the permission to retrieve nodes that are directly connected to the currently 

sampled subgraph. The sampling module will access the network only when the next 

node is selected out of possible candidate nodes.  

4.2 Path Semantic-Aware Sampling for Heterogeneous 

Social Networks 

 Based on sampling by exploration, we propose path semantic-aware sampling 

(PASS) for heterogeneous social networks, where we try to ensure nodes of type of 

interest with highly similar semantics are sampled as early as possible. Recall that a big 

challenge to calculate the actual meta-path semantic similarity is that we do not know 

the type of a candidate node before it is sampled. In addition, from the user’s 

Algorithm 1: Heterogeneous Network Entity Sampling by Exploration 

Input: seed node nseed, k = sample size 
Output: Sampled entity set S ⊆ V, graph Gs = (Vs, Es) 

1 Vs = {nseed}, Es = {( nseed, x) | x ∈ N( nseed)} 

2 S = ∅ 

3 nego = nseed 

4 while |S| < k do 

5 C = N(nego) 

6 v = weightedSample(ℱ(𝑣,Gs)),∀v ∈ C  

7 nego = v 

8      Vs = {Vs, v} 

9      Es = Es ∪ edges(v) 

10 End 
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perspective, nodes that are not immediately connected to the sampled network are not 

accessible for processing. To resolve this challenge, we propose to predict the meta-path 

semantic similarity score distribution for each candidate node v, and use such 

distribution to generate the ‘expected’ meta-path similarity of v given the sampled 

network Gs. In particular, we plan to resolve the computation through two possible 

approaches: one by calculating the aggregated marginal value of meta-path similarity 

that measures the similarity between any given node and the query node; another by 

calculating all partial meta-path counts for all sampled nodes and propagate the partial 

path counts to candidate nodes of interest.  

For partial meta-path count, the computation is relatively straightforward, as we 

are interested in counting |nseed-> x|s, s⊂P for a specific meta-path P. As for computing 

𝕸(nseed,x)P in general, where x is only an intermediate node in the meta-path, we give 

the following explanation. For all possible type(x) = Ti in position i of meta-path P (or 

partial meta-path path P’), 

𝕸(nseed, x)P = 𝑃( 𝑛!""# → 𝑥|𝑃!,𝕸)  

Effectively, the calculated meta-path similarity metric for the intermediate node x 

is how the query node closely connects x based on the partial meta-path. This score is 

equivalently the marginal probability that nseed travels to x dictated by the partial 

meta-path P’ and measured in respect to 𝕸  Simply put, the score 𝕸 (nseed,x)P 

computes how x contributes on average to the computation of 𝕸(nseed,v)P , where 

type(nseed) = T1 and type(v) = TN, at the either ends of the meta-path semantic, for any 

node v satisfying the node type specification.  
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Figure 4-1. An illustration to how to compute 𝔐(v,𝑛!""#)! in Gs 

 Readers may refer to Figure 4-1 for example. In the illustrated example, we use the 

query meta-path (APCPA). Consider candidate node v1, with the node type = Author. In 

this case, we simply compute 𝔐(v!,𝑛!""#)! according to suitable type-type adjacency 

matrices computation. For v2, of type = Paper, suppose the node is positioned at T4 of 

the meta-path, we then have all 𝔐(v!,𝑛!""#)(!"#") computed; we consider scores for 

all connecting nodes for v2 and ntype=Author as well.   

Having defined property methodology for computation for the semantic metric, we 

now turn to explaining likelihood function in terms of mathematical formulation. We 

wish to sample based on: 

                                              ℒ(𝑆!!!!  ,𝑉)P ≈ 𝔐 𝑛!""# , 𝑣 !+ℒ(𝑆!!   ,𝑉)P 

          𝑎𝑟𝑔𝑚𝑎𝑥!!!!ℒ(𝑆!!!  ,𝑉)P = 𝑎𝑟𝑔𝑚𝑎𝑥!!!!   𝔐 𝑛!""# , 𝑣 !+ℒ(𝑆!!   ,𝑉)P 

          𝑎𝑟𝑔𝑚𝑎𝑥!!!!ℒ(𝑆!!!  ,𝑉)! = 𝐺! + 𝑎𝑟𝑔𝑚𝑎𝑥!  𝔐 𝑛!""# , 𝑣 ! 

          ∴ ℱ 𝑣,𝐺! ! = E 𝔐 𝑛!""! , 𝑣 ! 𝐺!,𝔐 𝑛!""# , 𝑣 !|𝑛 ∈ 𝑁!}  

where 𝐺!!  is 𝐺! + 𝑣, and 𝑁! is the node set for the sampled network 𝐺!. Because the 

information from the full network is always invisible for access, we adopt incremental 
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estimation for likelihood. We can also view the estimation as the probability of v’s 

contribution to the calculation of ℒ(𝑆!!   ,𝑉)P. Since the likelihood is estimated by 

node-wise approximation of meta-path similarity metric, it effectively becomes the node 

selection score distribution. Note that we have relaxed the deterministic selection to 

probabilistic sampling to avoid overfitting local structure.  

Having defined what to compute for ℱ 𝑣,𝐺! ! and how to compute  𝔐, we now 

wrap up with how to deal with estimating information from the unsampled portion of 

the network. We propose to compute the metric score into two stages: one to estimate 

𝕸 𝑛!""# , 𝑣 𝑷𝟏:𝒊 while estimating the expected node type distribution for node v; one to 

update by propagating the marginal score down the network. The following section 

individually solves the problem of how to calculate the probability, with an 

approximation methodology.  

In fact, if we further separate node x from the multiplication, we have: 

𝕸 𝑛!""# , 𝑥 𝑷𝟏:𝒊 =    I[ type n , type 𝑥 = (𝑇!!!,𝑇!)] ∗
𝕸 𝑛!""# , 𝑛 𝑷𝟏:𝒊!𝟏

Z
!∈! !

 

where Z is the normalization factor depending on the metric used and the sampling 

method applied. Note that the indicator function dictates the type transition to match 

meta-path semantic. It is straightforward to see that the above combination of scores 

from neighboring nodes should produce 𝕸 𝑛!""# , 𝑥 𝑷𝟏:𝒊, as expected.  

4.3 Score Estimation Strategy  
The entire sampling heuristic requires us to know how 

I[ type n , type 𝑥 = (𝑇!!!,𝑇!)] ∗
𝕸 𝑛!""# , 𝑛 𝑷𝟏:𝒊!𝟏

Z
!∈! !

 

is computed given the node of interest n and the sampled network. We break this into two 

parts: expected type probability estimation and metric score estimation.  
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4.3.1 Expected Node Type Estimation 

In short, we are interested in 𝑃(𝑡𝑦𝑝𝑒 𝑣 = 𝑡|𝐺!), which is the expected node type 

distribution given currently available type and topology information.  

To conduct the calculation for type estimation, node type of v can be estimated 

from its neighboring nodes. This is because naturally certain types of nodes are 

connected to certain types of node/links. Mathematically, we denote the node type 

contribution as dictated by the connected neighbors of the node v: P(type(v) = t|Gs) = 

P(type(v)=t|type(Nv)), where type(Nv) represents the type information of observed 

neighbor edges and nodes of v. That is, Nv is the joint set of observed links and nodes 

connecting to v. Using Bayes rule, we can transform P(type(v)=t|type(Nv)) into 

P(type(Nv)| type(v)=t) *P(type(v)=t), since the P(type(v)=t) is deterministic (i.e. 

probability 1) as they are already observed Using Naïve Bayes assumption to assume 

the type of each neighboring node/link given type(v) is independent, we can further 

decompose P(type(Nv)| type(v)=t) into the following: 

𝑃(𝑡𝑦𝑝𝑒(𝑖)|𝑡𝑦𝑝𝑒 𝑣 = 𝑡)
!∈!!

 

 𝑃(𝑡𝑦𝑝𝑒(𝑖)|𝑡𝑦𝑝𝑒 𝑣 = 𝑡) can be obtained from the empirical conditional type 

counts of Gs, since the type of observed node i is already known. 

4.3.2 Metric Score Estimation 

Based on the intuition presented earlier, we entail our first heuristic to represent 

meta-path similarity metric estimation, which is an one-iteration propagation, 

implemented in multiple depth-first-search runs, name as MetaProp similarity scores 

for the sampled network Gs, where we initialize nseed to the value 1 and propagate the 
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score down Gs for one iteration through the following formulation. Denoting the 

propagation scores for node v is M(v), we have: 

𝑀 𝑣 =   E!"#$(!)[ 𝑆 𝑛, 𝑣 ∗
𝑀 𝑛
deg  (𝑛)

!∈! !

] 

                        =    𝑃(𝑡𝑦𝑝𝑒 𝑣 = 𝑡|𝐺!)
!

𝑆 𝑛, 𝑣 ∗
𝑀 𝑛
deg  (𝑛)

!∈! !

 

                        =   𝑃(𝑡𝑦𝑝𝑒 𝑣 = 𝑡, 𝑡 = 𝑇!!!|𝐺!) 𝑆 𝑛, 𝑣 ∗
𝑀 𝑛
deg  (𝑛)

!∈! !

 

where Ti+1 represents the type at i+1th position following the node type and 

position in the meta-path occupied by n. The calculation of the score is due to the 

propagation of scores from the already observed neighbors of v, over all possible node 

types that v may hold. 𝑆 𝑛, 𝑣 ∗ !
!"#  (!)

 is the transition function from type(n) to type(v). 

For the case of this study, we leave out the weighting function S(x,y) and let the 

transition behavior completely determined by the neighboring degree. Since 

𝑃 𝑡𝑦𝑝𝑒 𝑣 = 𝑡 𝐺!!  has been explained earlier, so we focus on the latter portion, 

𝑆 𝑛, 𝑣 ∗ ! !
!"#  (!)!∈! ! . We take important note that this propagation bases heavily on 

random walk implementation to ensure the score is not fixed to some local topology, 

thus overfitting the locality and mis-estimate the global structure. A complete score 

estimation can be seen as: 

Combining the terms together, ℱ 𝑣,𝐺! ! can be approximated as: 

𝑃 𝑡𝑦𝑝𝑒 𝑖 𝑡𝑦𝑝𝑒 𝑣 = 𝑡 ∗ 𝑃 𝑡𝑦𝑝𝑒 𝑣 = 𝑡 𝑠 𝑛, 𝑣
𝔐 n,𝑛!""# !

deg  (𝑛)
!∈! ! ,!∈!!  !∈!!

         

ℱ 𝑣,𝐺! ! ≅ 𝑃 𝑡𝑦𝑝𝑒 𝑖 𝑡𝑦𝑝𝑒 𝑣 = 𝑡 𝑃 𝑡𝑦𝑝𝑒 𝑣 = 𝑡 ∗ 𝑠 𝑛, 𝑣
𝑀(𝑛)
deg  (𝑛)

!∈! ! ,!∈!!  !∈!!
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We venture to explain further. Note that since we are propagating scores down the 

network by multiple runs of rooted random walk, it is likely to travel a node many times 

and updating the value based on the neighborhood. In effect, this is to aggregate the 

current marginal statistics of the neighbors, which adds influence of computation by 

other nodes of type TN. This formulation clearly benefits meta-path metrics that favors 

symmetric relations, such as Symmetric Random Walk or Pathsim. We prefer this 

behavior because optimizing bi-directional metrics clearly favors generating 

interpretable results, as demonstrated by the experiments in [14]. 

The merit of this formulation is that in the case of large-scale network, this 

formulation easily blends in with existing state-of-the-art computing methods for matrix 

computation. Also, the proposed method avoids the problem of needing to constantly 

maintain multiple partial semantic similarity matrices.  

We define the generalized case for the propagation measure that spans multiple 

iterations, which can be calculated as: 

 𝑀 𝑣 =      !!!
|!!|

+   𝛼 𝑆 𝑛, 𝑣 ∗𝑀(𝑛)!∈!(!)    

 Here S(n, v) is slightly modified to include division by node degree (which all 

effectively fuses to transition probability). Now we wish to show that this formulation 

leads to convergence, thus proving the usability in any case of problem setting.  

  

 Theorem 4-1. Given a sampled network Gs, fixed matrix S(a, b), and 𝛼 = [0, 1), 

following expansion calculation of scores in initialization, 

𝑀 𝑣 =      !!!
|!!|

+   𝛼 𝑆 𝑛, 𝑣 ∗𝑀(𝑛)!∈! !  converges. 

Proof. We first complete the score initialization phase. Then,  

∀𝑛 ∈ 𝑁  𝑖𝑛  𝐺!,𝑀! 𝑛 =   𝑛! 
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      , as some form of calculated score through propagation. So, for every node 

      , there is a corresponding score n0. We put all scores into a score vector  

      V = [v10, v10, …, v|N|0]. Now we have: 

      𝑀 𝑣 =      !!!
!!
𝑉(𝑣)+   𝛼 𝑆 𝑛, 𝑣 ∗𝑀(𝑛)!∈! ! .  

      Since all scores in V, S, and 𝔐 are fixed, and between the interval of [0,1],  

      Following the reasoning in [6], we see the scores will be positively   

      recurrent and aperiodic, satisfying ergocity.                                                                                                            ∎ 

 We take note that this generalized means to summarize the propagation effect, 

under the constraint of meta-path search length and type, is similar to the Propflow 

predictor[30]. However, we differ from Propflow in that they are interested in l-step 

propagation in a Breadth-First-Search manner, and do not apply random surfer model as 

we need process newly included information one by one. In addition, no constraint is 

imposed on the case of meta-path similarity search for Propflow. 

 There is, however, some limitations to the DFS approach. This is because the 

scores represented for each node is effectively some aggregated score for different 

partial meta-paths. This may not convey the particular meta-path score that we are really 

interested in. Instead, we further show a Breadth-First-Search approach, generalizing 

as PAth Semantic aware Score propagation (PASS), explained as follows. 

 See Figure 4-2, the calculation is divided into three components: a recorded path 

count for each node in the sampled network; expected type probability for the node in 

interest, and path completion probability that matches the partial meta-path to the actual 

meta-path dictated in search criteria.  
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Figure 4-2. An illustration on the overarching concept to how to compute 𝑃𝐴𝑆𝑆 

when used in a real case, as exhibited in Figure 4-3, we first compute the expected node 

type distribution for a particular candidate node given the sampled network. Using the 

computed type distribution and the existent type conditional probability table given by 

the sampled network, for any particular position and node type in the meta-path the 

candidate node may be, we compute the probability that the candidate node follows a 

particular partial meta-path. For example, in the publication network and given a 

meta-path (Author-Paper-Conference-Paper-Author), if we are interested in the partial 

meta-path that completes the query meta-path (Conference-Paper-Author), we compute 

the probability that the candidate node is of “Conference” node type, and use the 

conditional probability table to calculate the combined transition probability to Paper 

and Author nodes. Lastly, since we have a count table of all partial meta-paths (e.g. 

Author-Paper) for each node we sample, we can propagate these path counts to the 

candidate node, summing up all possible partial meta-paths (each multiplied by the 

completion probability). This will leave us the combined selection function, with the 

newly introduced terms labeled in red: 

ℱ 𝑣,𝐺! ! ≅ 𝐶 𝑛, 𝑖 ∗
!∈!"# !!∈! !

𝑃 𝑡𝑦𝑝𝑒 𝑖 𝑡𝑦𝑝𝑒 𝑣 = 𝑡 𝑃 𝑡𝑦𝑝𝑒 𝑣 = 𝑡
!∈!!

∗ 𝑃(𝑡𝑦𝑝𝑒(𝑃!)|𝑡𝑦𝑝𝑒 𝑃!!! )
!"# ! !!

!!!!!
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where C(n,i) is the corresponding count table for node n and partial meta-path from position 1 to 

position i. This method provides us a better intuition as to how to directly combine different 

partial paths, while penalizing for greater uncertainty, for a possibly fairer weighting of all 

contribution to meta-path computation. This avoids the ambiguity in the previous DFS-based 

MetaProp algorithm.  

 

Figure 4-3. An example applying PASS, using publication network 

 To sum up, existing sampling by exploration methods (by random or 

topology-driven selection) suffer from problems of easily overfitting local graph 

structures. However, in face of heterogeneous graph, where certain types may be 

predominant in the graph, naïve sampling may miss some nodes that are sparsely 

connected, but contain strong semantic meanings. Instead, the proposed score sampling 

heuritics prioritizes meta-path semantic similarity approximation, ensuring each 

inclusion of a new node can recruit the most semantically similar node in the limited 

sampling space.  
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Chapter 5 

Datasets, Experiments, and 

Evaluations 

 In this section, we will first explain the nature of the three real-life heterogeneous 

social networks used for the experiments of this study. In addition, we will discuss 

means for evaluating the performance of entity set search. 

5.1  Datasets 

 Each of the three real-life heterogeneous social networks covers different types of 

social relations. The three networks are as the following: High Energy Physics Citation 

Network, DBLP Publication Network, and Move Network. The basic statistics of the 

networks is shown in Table 5-1, and the details for the origins and characteristics of the 

networks are shown in the ensuing subsections. We use the largest connected 

component from the extracted network data for the experiments. 

Table 5-1. Statistics of datasets. 

5.1.1 High Energy Physics Citation Network 

 # Node # Edge # Node Type # Edge Type 

High Energy Physics Citation 41,744 483,217 4 5 

DBLP Network 86,535 81,255 3 3 

Movie Network 24,362 44,396 5 6 
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High Energy Physics Citation network3 contains papers published from 1993 to 

2003, which was released in 2003 KDD Cup. The network covers four node types: 

Physics Papers, Authors, Journals the Papers are published in, the E-mail Domain for 

the author membership. The edge types denote the citation relationships: Authored (i.e. 

Author Authored Paper), Published in (i.e. Paper Published in Journal), Cites (i.e. Paper 

Cites Paper), Email affiliated (i.e. Author is Email affiliated to E-mail domain). The 

corresponding graph schema for the network can be seen in Figure 5-1.  

The nature of the publication network, we take note that there is a high imbalance 

in node type labels distribution for nodes, which may make pure walking methods prone 

to bias to certain node type, such as journal type. 

 
Figure 5-1. The network structure for High Energy Physics Citation Network. 

5.1.2 DBLP Publication Network 

 For the DBLP Publication Network4, it is a network of online repository of 

publication information for the research domain of computer science, made available by 

Trier University. We extract information from Artnet (Arnetminer.org), which provides 

                                         
3 http://www.cs.cornell.edu/projects/kddcup/ 

4 http://www.informatik.uni-trier.de/ ley/db/ 
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more structured data to explain the network. We follow the definition suggested in [14] 

to extract a subnetwork from the original data, using conferences ranked top in 

Microsoft Academic Network6 for four major research areas: Database, Machine 

Learning, Information Retrieval, and Data Mining. We select a total of 22 conferences 

in our study (see Table 5-2 for the complete list). The network shares very similar 

semantic structure as High Energy Physics Network, as the node types are Paper, 

Author, and Conference/Journal. The link type dictates several relations: Authored (i.e. 

Author Authored Paper), Published in (i.e. Paper Published in Journal), Cites (i.e. Paper 

Cites Paper), Appears in (i.e. Word Appears in Paper abstract/title), Co-occur (i.e. Word 

co-occur with Word in certain number of papers). The complete graph schema of the 

network is shown in Figure 5-2. Again, take note of the sparse connections of intra-type 

links and high imbalance of the node labels. 

 

Figure 5-2. The network structure for DBLP Publication Network. 

 

Table 5-2. The four research domains and corresponding conferences for the DBLP 
Publication Network. 
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5.1.3 Movie Network 

 The movie network is extracted from the imdb online movie database5. A rather 

complex connotation of entities and relationships exist between movie and contributors. 

For the sake of simplicity, we consider the type representations and interactions as 

dictated in Figure 5-3. For node types, we consider Actors/Actress, Movie, Contributors 

(Directors, Producers, and Writers), Place (Company of production), Year, Category 

(type or genre of the film), and Duration (the categorized length of movie in theaters). 

For link types, the network is characterized by several relations: Act in (i.e. 

Actor/Actress Act in Movie), Contribute (i.e. Contributor Contribute to a Movie), Made 

In (i.e. Movie Made in Place), Produce In (i.e. Movie Produce In Year), Belong To (i.e. 

Movie Belong to Category), and Last (i.e. Movie Last Duration). For this network, we 

observe a more balanced distribution for different types of people (namely, actors and 

contributors). Other attributes (duration, year, place, category) are more imbalanced. 

 
Figure 5-3. The network structure of Movie Network. 

5.2  Evaluation Metric 

 In order to measure the relevance of the retrieved list and full network, we apply 

                                         
5 http://www.imdb.com/ 
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the notion of comparing ranks of computed semantic similarity scores between entities 

of the two lists. The idea follows in that objects with high semantic similarity in the 

original network should be returned by the search algorithm while the less similar 

objects should not be returned by the algorithm until later stages of sampling. Therefore, 

to compare the similarity of meta-path semantics, we utilize the concept of Normalized 

Discounted Cumulative Gain (NDCG) as our evaluating measure. To calculate 

NDCG@k that concerns top-k most similar entities of type T to query Q, we impose a 

small modification. Before we apply NDCG directly, we sort the two sequences (S for 

the sampled nodes and Vtype=T denoting all nodes in G of type T) in terms of the metric 

𝔐 to compare the strengths between the most similar nodes in each node list with 

respect to Q. To summarize, we arrive at the following computation for NDCG@k: 

 𝑁𝐷𝐶𝐺 𝑆,𝑉!"#$!! @𝑘 =   𝑠𝑜𝑟𝑡𝑒𝑑( !𝔐 !",! !!
!"#! !!!

!
!!! )/𝑠𝑜𝑟𝑡𝑒𝑑( !𝔐 !",! !!

!"#! !!!
!
!!! ) 

5.3  Baselines 

 For baselines in comparison, we consider several popular sampling methods: 

1. Random Surfer/Random Walk Model with restart: equivalently viewed as 

PageRank measure[25], the sampling method tries to have a random walker keep 

moving to a neighboring node and with a probability restarting at nseed with 

damping factor 𝛼. With initialized node score function 𝛿, the importance scores 

can be evaluated as: 

𝑃𝑅 𝑣 = (1− 𝛼)𝛿(𝑣)+   𝛼 𝑃𝑅(𝑛)
!∈!(!)

 

2. Maximal Entropy Random Walk: this sampling model emphasizes on creating 

equal probabilities for different paths connecting any pair of nodes in a 

network[26]. By enforcing equal path probabilities, we assume the imbalance of 
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distribution of nodes/edges across different labels may be rightfully reweighted. 

The effectiveness of such notion in relating node similarity has been applied to link 

prediction[27]. The explicit calculation for the transition matrix from i to j, 𝑃!" ,  is 

as the following: 

𝑃!" =   
𝑎!" ∗ 𝑢!
𝜆𝑢!

 

with adjacency matrix 𝐴 = {𝑎!"}, 𝜆 is the largest eigenvalue of A, and u is the 

corresponding eigenvector. As we do not have the full graph adjacency matrix 

beforehand, we use degree-based estimator for approximation[26]. 

3. Locality Connected Random Walk: this method focuses on maximizing 

connection back to sampled network. The more densely connected the candidate 

node to the sampled network, the more likely it is going to be selected [28]. We 

define the scoring function as: 

ℱ 𝑛 =   
#  𝑒𝑑𝑔𝑒𝑠   𝑣,𝑛 , 𝑣 ∈ 𝑉!
#  𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒  𝑛𝑜𝑑𝑒𝑠  

5.4  Implementation  

 For implementation of all sampling methods, we tried sampling from all one-step 

neighbors to Gs or just from the one-step neighbors of one nego. Experiment results show 

similar results for both approaches. To mitigate the computation cost for dealing with a 

large amount of one-step neighbors to Gs, we adopt random surfer model for all 

sampling models, introducing damping factor 𝛼 that indicates restart probability at the 

starting query node nseed. 

 For the implementation of the experiments, we chose to use networkx6 library in 

Python language. In addition, MATLAB is used for some matrix computation. For 

                                         
6 http://networkx.github.io/ 
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predictive model training, we use for learning ranking model. All experiments are run 

on a Linux server of cluster machines with AMD Opteron 2350 2.0GHz Quad-core 

CPU and 32 GB memory. 
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Chapter 6 

Experiment 

 We will, in this section, examine different aspects of our problem setting and 

solution on the three different real life heterogeneous social networks described earlier. 

We first develop our intuitions for the proposed framework through some motivating 

experiments. Later, we will discuss results from various other settings, showing the 

superiority of our method. For the settings of parameters, we use restart probability = 

0.15 for RWR (as suggested by [7]), DegRW, and LocalRW. All experiments are 

repeated on random seeds for five times to ensure stability in results. 

6.1  Effects of Information Inaccessibility, Placement 

of Interest, and Meta-Path Metrics 

 We first begin our experimentation to see how preliminary settings of the research 

problem and evaluation method may affect the result.  

 Before showing experiment results, a list of meta-path semantics is listed in Table 

6-1. We label the meta-path semantics with the corresponding node type labels dictated 

by the network (in the case, High Energy Physics) and briefly discuss the semantic 

interpretations. For the experiments, we concern with two nontrivial meta-path 

semantics that map to DBLP and Movie Networks: APCPA (i.e. Author- Paper - 

Conference/Journal-Paper-Author), which explains how two authors are related by the 

common publishing venues, and CPAPC (i.e. Conference/Journal – Paper –Author 

-Paper-Conference/Journal), which measures the similarity between publishing venues 
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by how many authors tend to publish at both venues. 

 

Table 6-1. A list of meta-path semantics used in High Energy Physics Publication 
Network to compare similarity search via exploration of different pairs of node types. 
For each meta-path, the table provides a physical meaning of the semantic path. The 
highlighted meta-paths (APCPA, CPAPC) are used as common meta-path semantics 
throughout all three testing real-life networks, as labeled in red and orange. 
 

We first ask ourselves a simple question: do our proposed methods actually work 

in situations where node types are visible? This is effectively a weakened constraint on 

our original problem definition. We should expect our methods’ performance achieve 

competitive results in terms of similar node entity retrieval. Later, we will emphasize 

the idea of the significance in the difficulty of using ‘guesses’ on portions of network 
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where no apparent information is available. We plot the results for sampling with 

neighboring nodes’ type information visible. For the baseline sampling methods, we 

enforce restart if the currently traversed node by the random surfer is not matching with 

the schema. See Figure 6-2 for the result in High Energy Physics Network using 

APCPA meta-path.  

 
Figure 6-2. Results of Search Methods Under Visible Neighboring Type Information. 
Left: # of nodes sampled for target type v.s. NDCG@10. Right: # of total nodes 
sampled v.s. NDCG@10 
 

 We show the results of |S| v.s. NDCG@10 in the left and exploration cost v.s. 

NDCG@10 on the right, where exploration cost is the total nodes in Gs. The left figure 

is primarily for the purpose of showing how fast can the sampling methods achieve high 

NDCG given that users are sensitive at the cost of retrieving target type nodes. For the 

right figure, in each of the sampling methods, we sample nodes of the target node type 

for 500 nodes, or until the curve approaches an asymptotic bound. In this case, we can 

see that the proposed MetaProp and PASS spend about the same cost (a little bit more 

for MetaProp) exploring. However, we see that our proposed method reaches high 

NDCG accuracy at the early stages of sampling, because of the semantic similarity 

requirement. For other sampling methods, we see Random Walk with Restart is the 

strongest baseline. We can observe that as the pure Random Walk with Restart is not 
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biased, surfing nodes to different types will be easier, leading to lower cost. Topology 

biased methods tend to look to less relevant nodes, like those that are more closely 

connected to popular entities, but do not match the required semantic meaning. In short, 

we have shown that the simpler problem of visible node type exploration can be solved 

using our method in a very straight-forward way.  

 Next, we look at the results of inaccessible neighboring node type information. The 

results are shown in Figure 6-3 for High Energy Physics Network with APCPA 

meta-path semantic. For the search accuracy, without access to node type information 

makes sampling harder to estimate. The evidences can be found in the lowering 

accuracy in the sampling methods. However, even under this constraint, the proposed 

method still outperforms all baselines. Note that Random Walk with Restart is still the 

most competitive method, while other biased sampling by exploration methods can 

easily walk to nodes of high semantic dissimilarity to the query node and stuck to that 

local topology. MetaProp and PASS enjoy another advantage: since the sampling 

method can predict candidate node’s label, a lot of exploration cost can be saved, as 

long as we can correctly infer the node type label. In both cases, PASS clearly performs 

superior in terms of NDCG measure evaluation. 

 
Figure 6-3. Results of Search Methods Under Invisible Neighboring Type Information. 
Left: # of nodes sampled for target type v.s. NDCG@10. Right: # of total nodes 
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sampled v.s. NDCG@10 
 

 Now, we look further into the nature of the evaluating metric used in the 

experiment: Normalized Discounted Cumulative Gain for sorted meta-path similarity 

scores. We are interested in the effect of k, or the number of top-ranked items of interest, 

that affect the measure of NDCG@k. The results of High Energy Physics Network are 

plotted in Figure 6-4. The experiments investigate four different kinds of k: k=10, k=20, 

and k=50. Such k are selected to reflect how many items a person would normally 

concern to determine similarity for a Author, Paper, Conference, Movie, etc. We 

observe that as k increases, the NDCG@k scores decrease in return. For the baseline 

methods, the increments decrease much more swiftly than the proposed method. For 

MetaProp, the performance also drops with increasing k. The only exception is the 

proposed PASS algorithm. The performance retains high NDCG for different k values. 

This shows that important nodes that hold high semantic similarity to the query node are 

sampled early in the proposed heuristic. Based on this concept, we can search for a safe 

threshold to sample, which is around |S|~150 for reasonable k~[10,50]. This conclusion 

fits intuition, as user usually is interested in searching only dozens of potential similar 

entities and too high a k may affect interpretability. 
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Figure 6-5. Plotting sampled nodes for desired object set S against NDCG@k for 
different values of k, using the High Energy Physics Network as example. 
  

Lastly, we attempt to confirm the sampling NDCG results against different 

evaluating meta-path metrics are in accordance with the initial aim in the methodology 

design. See Figure 6-6 for results in both Symmetric Random Walk (SRW) and Pathsim 

metrics (sampling until |S|=500). We can see that different sampling methods perform 

differently when evaluating using different metrics. Most notably, we see Random Walk 

perform much worse in SRW metric, which is evident as methods like Local RW 

concerns with most expansion connection, which may introduce more connecting 

meta-paths back to nseed. We note though, however the variability in performance, 

MetaProp consistently outperform both in terms of NDCG and in exploration cost.  
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Figure 6-6. Exploration cost v.s. NDCG@10 for Meta-Path = (APCPA) in High Energy 
Physics Network. Left: Pathsim metric, Right: SRW metric. Sample till |S| = 500. 
 

It is interesting to note, though, that PASS holds performance not much superior to 

the baseline methods, and starts to perform worse with more exploration cost than 

MetaProp. This reveals an important argument: there is a tradeoff between 

Breadth-First-Search sampling paradigm and Depth-First-Search sampling paradigm, 

depending on application. In DFS approach, multiple reruns allow random walker to 

continuously renew its belief on the aggregative count of partial meta-paths. This 

combination of multiple paths alleviates the problem of one-way path metric 

approximation. In the BFS approach, however, the objective focuses solely on 

one-directional path count of meta-path, which benefits Pathsim (as the numerator of 

Pathsim is the most important component), but not for heavily normalized measures like 

Symmetric Random Walk.  

Based on the above experiments, for rest of the study, we set the parameters to: k = 

10, and measuring metric: PathSim for node pairs of same type and SRW otherwise. 

The tradeoffs between BFS/DFS methods are displayed through different meta-paths.  

6.2  Evaluating Different Meta-Path Semantics and 

Datasets  

Following the list of meta-path semantics detailed in Table 6-1, we cover a set of 

distinctive semantics, under different path lengths, to see how the search processes vary 

due to different semantic objectives. These meta-path semantics have some interesting 

characteristics. For instance, semantics with shorter meta-path lengths tend to have 

more proximal connections in a network (such as co-authorship). This can be observed 

in the experiment results, as the size of the set for sampled objects tend to be small. On 
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the other hand, longer connections are able to cover more intrinsic explanations that 

relate two particular objects. We show the results on the High Energy Physics 

Publication Network for these different semantics in Figure 6-6. 

 We find that our proposed sampling methodology is able to achieve high NDCG in 

early sampling stages. In many cases, the proposed method shots up very quickly in the 

beginning and reaches the top, which remains stable for the remainder of the 

observation interval. For the other competing methods, NDCG growths are considerably 

slower. In fact, these curves are more likely to show a staircase-like growth- meaning 

after some sampling steps, the NDCG values suddenly jump up. This process repeats 

until stabilization. An intuitive explanation can be viewed in terms of retrieval: given a 

sampling budget (size of S) and number of items in interest (k in NDCG), we want to 

have high precision and recall. This means we want to obtain important objects during 

the sampling by exploration process. More importantly, we want to have high hit rate 

given the limited budget available, which is nontrivial, but MetaProp and PASS do it 

easily. However, we observe that there is a variance in NDCG performance for the 

proposed methods. While MetaProp outperforms baselines throughout different 

meta-paths, PASS is not always a better performer (though sometimes PASS clearly 

surpasses other comparing methods, including MetaProp). We again refer to the BFS 

nature of the sampling algorithm. For the PASS algorithm, if we are traversing on 

meta-paths with too many repeating node types, it is likely that the sampling algorithm 

is prone to sample the target node type of interest too early, leading to wrongly 

interpreted meta-path metric approximation. For example, in APCPAP meta-path, 

PASS first samples C, a conference node, then upon estimating subsequent paper nodes 

P, the algorithm would dictate the same probability of selecting P and A 

(P(type(P)|type(C))=1). In this case, given the high degree of C, the algorithm is going 
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to sample paper for most of the time. DFS approach, however, avoids fitting local type 

distribution and topology by traversing meta-path semantic during sampling.  

  

         (a) Meta-Path = (APA)                (b) Meta-Path = (APCP) 

  

        (c) Meta-Path = (APCPA)2             (d) Meta-Path = (APCPAP) 

  
        (e) Meta-Path = (CPAP)               (f) Meta-Path = (CPAPC)                     
 
Figure 6-6. NDCG@10 results for different meta-path semantics tested on the High 
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Energy Physics Publication Network. The measuring metric for the meta-path semantic: 
PathSim metric for symmetric type and Symmetric Random Walk otherwise.  
     

 As already explained earlier, the meta-paths used for the High Energy Physics 

network bear quite some resemblance to other networks in interest. Therefore, we 

briefly show the results for the DBLP Publication Network and Movie Network to 

demonstrate the consistency in the performance of the approach. We illustrate the 

results in Figure 6-7, using meta-path equivalent= (APCPA), (CPAPC) in HepTh. We 

find very similar patterns emerging from the two datasets, as the proposed method 

reaches the top very early. As for the Movie Network, the curves are much more flat, 

which is likely due to a more complex type relations of the schema. 

 

(a) Results for the DBLP Publication Network. Left: Meta-Path (APCPA) |S| = 500. 
Right: Meta-Path (CPAPC) |S| = 6 

 
(b) Results for the Movie Network. Left: Meta-Path (APCPA) |S| = 100. Right: 
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Meta-Path (CPAPC) |S| = 100 
 
Figure 6-7. NDCG@10 results for DBLP Publication Network and Movie Network.  
 
6.3  Examining Different Parameter Settings 

 Having checked the validity of the proposed sampling method, we turn to examine 

the setting of the method. We first examine the performance nature in DFS-based 

algorithms (which are implemented by random surfer algorithms). Acknowledging the 

random surfer model of the sampling method, first note that calculate distribution on all 

one-step hidden neighbors and only neighbors of an ego node does not constitute much 

different in performance. The result reflects the nature of the dataset, as we do not have 

the fully observed information, so if we attempt to calculate on the whole Gs, there is a 

good chance of going to local optima.  

We look at the assignment of random surfer at restart. Figure 6-8 shows the 

difference between restarting at the seed node and at random node. We see starting at 

random node improves accuracy at a later stage, but early retrieval is less effective. 

 

Figure 6-8. NDCG@10 results for High Energy Network. Left: Restarting at Random, 
Right: Restarting at nseed 
 
 We also consider the restart probability for our DFS heuristic, MetaProp. See the 

diagram in Figure 6-9 for results, which considers High Energy Network’s meta-path 
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(APCPA) at |S| = 250. We see several peaks, and some occur at the endpoints of the [0,1] 

segment. This presents a tradeoff between pure chain-referral sampling and highly 

biased neighborhood sampling (that tends to sample in breadth-first search manner). 

The result suggests careful tuning needs to be considered that account different 

semantics, network features, sampling budget, and the number of top items of interest. 

 

Figure 6-9. Restart probability v.s. NDCG@10 for HepTh, meta-path = (APCPA) 
 
 Lastly, we take special interest in checking whether counting paths backwards in 

PASS would contribute to the metric estimation. To be more exact, when we are 

computing path completion probability, we add the count table scores from the 

neighbors of the candidate node. This sum is linearly interpolated with the original 

estimation term, in which we weight by 𝛼. We presume this step should account the 

bi-directional characteristics exemplified in Pathsim metric. The results for path 

APCPA in HepTh network are shown in Figure 6-10. We see that the high connecting 

degree amplifies the local topology, leading to higher cost and lower NDCG.  
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Figure 6-10. NDCG@10 for HepTh, Path=APCPA, for PASS under different 𝛼 
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Chapter 7 

Applications 

 We conclude the experiments with a couple of simple cases to discuss the 

interpretability of our search results.  

7.1  Entity Retrieval Real Examples and Accuracy 

Take DBLP Publication Network for instance, we try to retrieve the most relevant 

conference venues given a query conference and meta-path (CPAPC). We give three 

exemplifications. Take database domain for example, if we set query = EDBT, which is 

a premier international database conference, then the sampling results can be found in 

Table 7-1. The top relevant results to PathSim metric and the sampling methods can be 

seen in Table 7-1. Results that do not belong to the corresponding domain are labeled in 

(database:red, data mining:black, IR: orange, machine learning:blue) for reference. 

Observing the results, we can figure out that the list returned by comparing pure 

PathSim metric is a list of high profile and specific data mining conferences. We see 

that Pathsim is quite accurate in terms of interpretation. We further see the result for 

data mining domain for query = SIAM SDM, and machine learning domain for query = 

NIPS. Comparing lists by the sampling methods, we realize our proposed method 

returns highly valued conferences in its early stage. Other methods perform relatively 

worse in the semantic interpretation. In addition, we find our proposed method return 

results from consistent domains, even when it returns results from irrelevant domains, 

whereas other sampling method jumps erratically between different domains. 

We also consider correlation with real labels. For the DBLP Publication Network, 
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the conferences can be classified into four different domains. Given a conference query 

and meta-path (CPAPC), we would like to return conferences of highly relevant 

domains. Figure 7-2 shows the result with 7 returned conferences given the query. For 

this dataset, the highly connected network causes random surfer to easily walk to 

conferences of different domains. However, in average, the proposed method is able to 

attain higher accuracy. 

 

(a). Query = EDBT, domain = database 

 

(b). Query = SIAM SDM, domain = data mining 
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(c). Query = NIPS, domain = machine learning 
Table 7-1. Top Similar Conference given the meta-path semantic (CPAPC) for 
sampling methods and PathSim score benchmark.  

 

Figure 7-2. Average accuracy for DBLP Network, under meta-path (CPAPC) 

7.2  Towards Building Learning to Rank Model with 

Attribute Information Using Retrieved Target Nodes 

 We entail another possible user case scenario: in interaction between user program 

with another application, the other application may provide our user program some 

information, such as individuals. However, we may not have immediate connection that 

links the particular individual to the social network. More often, we are only left with 

some descriptive information of the individual. It is very important to come up with a 

method to link the individual to the query in consideration and to the network in a 
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certain way. This is clearly a challenging task, as we do not have any semantic 

measurement available to provide any sort of estimation.  

 To cope with this challenge, we show that the set S of nodes with target type T can 

be used to build learning to rank model to assist prediction of similarity for nodes that 

do not have any topological information related to the graph but only some 

content/attributes describing them. Consider the DBLP publication network as an 

example, where in addition to the currently available three node types (Author, Paper, 

Conference) we add word attributes for each paper that include the paper’s title and 

abstract (if available). Suppose we are interested in retrieving similar authors to a 

particular author via meta-path (APCPA). For each author ai, we represent the author 

using aggregated information, resulting in fai = [fw1, fw2, …, fwk] that means bag of 

words features with frequency of the word appearing in all ai’s papers as feature value. 

 Figure 7-3. Illustration of the application scenario where we wish to predict semantic 
similarity of nodes to query with only attribute information 

 

Now the problem we are interested can be described as: if we only have an 

author’s attributes (such as fai) but not how it is connected to the heterogeneous network, 

can we recover its relative semantic importance to other nodes in the network? To 

resolve this problem, we propose to use the sampled nodes S to train a ranking model 
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that can apply to instances with attributes only. An illustration of the process is shown 

in Figure 7-3. 

Specific formulation for the problem goes: we assume as input a set of instances, 

each derived from a node in S. Suppose each instance i can have features as fai. In 

particular, we transform the feature with f’ai = 𝐟𝒂𝒊, f𝒏𝒔𝒆𝒆𝒅 , a functional inner product 

between two feature vectors for instance node ai and query node nseed. For y’s value, we 

use the currently available meta-path similarity 𝔐 𝑎! ,𝑛!""# ! . Using f’ai as new 

feature representation for instance i, we build data matrix D, candidate pair matrix P 

with each pair (fa, ya) and (fb, yb). To derive prediction function 𝑓(w,  x) with w as 

model weight function, we apply the combined regression and ranking objective [29]: 

min
w∈R!

𝛼𝐿(w,  D)+ 1− 𝛼 𝐿 w,  P +
𝜆
2
w !

! 

Using the above formulation provides a match to our scenario: we are both 

interested in recovering the meta-path similarity measure, and ensuring the highly 

similar nodes should be placed in front with highly dissimilar nodes placed far in back 

of the list, achieving good overall listwise ranking. This goal is exactly what combined 

regression and ranking objective aims to attain. We use the gradient computation and 

sampling methods suggested in [29]. For implementation, we use sofia-ml package7, 

using pegasos-SVM with default parameters. The ranking objective is tuned to 

combined regression and ranking.  

As for baseline, we consider directly computing the inner product between two 

bag-of-words vectors for 𝐟𝒂𝒊, f𝒏𝒔𝒆𝒆𝒅 . We compare the result of the baseline against 

learning to ranking model trained on different sampling methods and different sizes of 

S.  

                                         
7 https://code.google.com/p/sofia-ml/ 
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For the training data, we use the sampled nodes in S to generate features directly. 

As for testing data, we sample 2000 authors based on the similarity score ranking to the 

query author. If the number of nodes with similarity greater than 0 is smaller than 2000, 

we sample the rest of the 2000 authors from the set of all authors that have 0 similarity 

with the query, and generate the features respectively. Again, we average the result over 

five different independent query nodes.  

To evaluate our result, we take note that our true goal at heart is to retrieve nodes 

that are highly semantically related, with respect to meta-path semantic measures. 

Therefore, we measure precision@k on the ranked list of predicted scores by the 

prediction model to see how correct are the retrieved nodes that the model believes to 

have high semantic similarity scores. To get a rough estimate of k, we apply k-means to 

divide the instances of ground truth scores into two groups, which can serve as a 

benchmark that divides the highly dissimilar nodes from the rest of the instances. For 

the case of this dataset, we use k=300. 

See Figure 7-4 for result. We find the naïve baseline performs rather poorly. This 

is due to highly incomplete information in the instance attributes: some instances have 

abstracts while others do not, leading to high imbalance of amount of information. 

Using predicted models significantly improves the performance. In particular, we find 

the proposed method consistently perform better than the other sampling methods. An 

important observation is that the precision performance actually increases with more 

nodes sampled. This corroborates the belief that our proposed method retrieves those 

nodes with high semantic similarity to the query nodes early in the sampling stage, 

while other sampling methods may wonder in the network for a long time before 

finding the nodes that can really boost the predictive model.  
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Figure 7-4. Precision@300 versus the number of nodes in S for training the model, 

comparing using different sampling methods and pure bag-of-words cosine similarity   
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Chapter 8 

Conclusion & Future Work 

 Heterogeneous social network object search and retrieval using semantics objective 

is crucial for effective role analysis of each node and how it interacts with other nodes 

within a graph. In this work, we explore heterogeneous graph entity search based on 

explorative sampling algorithms. In particular, we provide a generic sampling 

framework accounting meta-path semantic structure information. A method utilizing 

probabilistic weighing of candidate nodes is proposed, and the method applies 

approximation scheme that uses weighted random walk for score computation. We 

design a series of experiments to verify the validity and usefulness for the sampling 

algorithm. The experiments confirm our hypothesis of the effectiveness in our sampling 

algorithm as well as the interpretability of the results. In addition, some application 

scenarios are introduced and briefly demonstrated in forms of predictive modeling. The 

future work includes automatically discovering the semantic importance of each 

meta-path semantic, incorporating a general learning framework for multiple domain 

attributes into network entity search, and a more general, Bayesian-inference driven 

prediction model for sampling.   
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