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Abstract

The information diffusion on social networks has been
studied for decades. To simplify the diffusion on social
networks, most models consider the propagated infor-
mation or media as single values. Representing media as
single values however would not suitable for certain con-
cernful situations such as the voter preference toward
the candidates in an election. In such case, the repre-
sentation would better be lists instead of single values so
people can try to alter others’ preference through social
inference. This paper studies the diffusion of preference
on social networks, which is a novel problem to solve in
this direction. First, we propose a preference propaga-
tion model that can handle the diffusion of vector-type
information instead of only binary or numerical values.
Furthermore, we theoretically prove the convergence of
diffusion with the proposed model, and that a consen-
sus among strongly connected nodes can eventually be
reached with certain conditions. We further extract rel-
evant information from a publicly available bibliography
datasets to evaluate the proposed models, while such
data can further serve as a benchmark for evaluating
future models of the same purpose. Lastly, we exploit
the extracted data to demonstrate the usefulness of our
model and compare it with other well-known diffusion
strategies such as independent cascade, linear threshold,
and diffusion rank. We find that our model consistently
outperforms other models.

1 Introduction

With the success of viral marketing, people see the
power of crowd opinions, and believe that individual
options or preferences could be highly affected by ac-
quaintances even though individuals generally possess
intrinsic preferences. For instance, in an election, peo-
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ple would argue and even attempt to convince others
for their favorite candidates. With the rise of social net-
working service (e.g. Facebook or Twitter) in Web 2.0
era, people would create, or reply posts to promote the
positions of their favorite candidates on others’ mind.
In such case, it is the preference toward a set of can-
didates that is propagated in a social network. Up to
date we have not yet seen too many computational ap-
proaches with systematic and quantifiable studies on
this issue. Nevertheless, being able to model the human
preference does possess its own value in the real world
applications. Social scientists might wonder to what
extent the opinions exchange among friends can affect
each other’s viewpoints toward an object. Campaign
companies might inquire how to promote a candidate
given a limited budget through a social network. Such
questions are not easy to answer via a real-world user
study, in particular when the network becomes huge.

Although the issues about information propaga-
tion on social networks have been studied for decades,
many proposed models such as the independent cascade
model, linear threshold model, SIR/SIS model, and heat
diffusion model, unfortunately, assume the sources for
propagation is either a binary value or a real number.
They cannot be applied directly to solve our problem
where it is a preference list that needs to be propagated
on the network. The goal of our study, therefore, is to
design a suitable framework that allows us to model the
preference propagation on social networks.

To handle the information propagation such as the
situation in election, we have realized several properties
that a suitable preference propagation model require,
namely hyper dimensional media, input dependent, de-
terministic convergence, and consensus. The properties
are intuitively inspired by the natural real-world phe-
nomena, and are summarized as the follows. First, we
prefer the media (which represents preference toward
different candidates) propagated throughout the process
being a real valued vector that sums to one, because in
the real world scenario usually each node (or individual)
has equal right in casting votes. Second, the preference
distribution should be affected significantly by the ini-



tial intrinsic preference as well as the social network
topology. Finally, we hope the propagation should con-
verge eventually, and the common trends in real world
would finally appear after a great number of interactions
[11]. We will show that our model is the only one that
can satisfy all properties among the existing models.

The novelty and contributions of this paper can be
viewed from several different angles.

1. We design a novel information preference propaga-
tion model which focuses on the propagation of a
vector instead of a single value. This model is not
only simple and intuitive, but also capable of pro-
ducing several meaningful real-world behavior such
propagation.

2. We propose the importance properties to follow for
a preference propagation model. We also assess the
quality of the proposed model by proving its con-
vergence and several other important properties.

3. We propose a novel way to obtain relevant infor-
mation and ground truth from publicly available
datasets to evaluate the preference propagation
models. Such data can further serve as a bench-
mark for future models of the same purpose. Using
the ground truth obtained, we then conduct exper-
iments to demonstrate the validity of our model in
predicting the change of citation preference among
authors through collaboration networks.

2 Related Work

Linear Threshold Model (LT Model) [6, 8] and Indepen-
dent Cascade Model (IC Model) [8, 2] are well-known
cascading models, and are the foundation for a number
of more sophisticated models. In the LT model, a real-
value weight is propagated through the network. In the
IC model, by contrast, only binary signal are consid-
ered. Kempe et al.(2003) [8] generalized the IC model
by introducing a General Cascade Model. D.Grul et
al.(2004) [7] and Leskovec et al.(2006) [10] proposed gen-
erative model to simulate blog essay generation based
on the IC Model. These models assume nodes can turn
from inactive to active given a certain probability for
cascading. Based on the LT Model and the IC Model,
Saito et al.(2010) [15] proposed Asynchronous Linear
Threshold Model and Asynchronous Independent Cas-
cade Model.

However, the above models are formulated on the
assumption that model states are binary (active or
inactive) and there is a binary signal and real-number
(weight) propagating in the network. It is very different
from our model which assumes the propagation of an
ordered preference list.

Another influential line of research, following the
success of the PageRank algorithm, is to put the prop-
agation process in an explicit recursive mathematical

form. The Heat Diffusion model [13, 18] is an ap-
proach to simulate the diffusion process. Heat Diffu-
sion is a physics phenomenon describing heat flows from
high temperature positions to low temperature posi-
tions. Using Heat Diffusion, Ma et al.(2008) [13] pro-
posed a model to analyze candidates selection strategies
for market promotion. Below is a description of diffu-
sion. The process is formulated as:

fi(t+ ∆t)− fi(t)
∆t

= α
∑

j:(vj ,vi)∈E

(fj(t)− fi(t)),

where fi(t) is the heat of node i at time t, and α is the
thermal conductivity-the heat diffusion coefficient.

In the Heat Diffusion process, each vertex receives
heat from its neighbors, which is similar to the propa-
gation phase of our model. The major difference, will
be discussed in the following section, is that such model
lacks a normalization phase (since it considers only the
propagation of one value) and a fusion phase (because
the heat itself can disappear after diffusion, so there is
no need to fuse on heat diffusion model).

Inspired by these previous works, our model seeks
to take the strong points of each of these approaches,
namely, their focus on mimicking commonly observed
social interaction characteristics such as forming con-
sensus as well as their incorporation of structural infor-
mation into the propagation process, and blend them
into a more coherent framework that could be used to
answer real world social problems of interest.

In 1992, Bartholdi, Tovey, and Trick [1] first stud-
ied the complexity of the process to determine needed
actions by organizer to add or remove candidates to ma-
nipulate election results (where it is recognized as the
classical social choice theory). However, they did not
propose any model for the interactions between voters.
Gibbard [5] and Satterhwaite [16] showed that every
election scheme with at least three possible outcomes is
subject to individual manipulation. This means the mi-
nority has a chance to manipulate the group decision to
secure a preferred outcome. Gibbard and Satterhwaite
also addressed the computational difficulty in minority
manipulation. However, their model assumes indepen-
dence of voters, which means no voter’s preference can
be affected by others. Nevertheless, existing studies in
this direction still focus on the complexity and feasibil-
ity issues, which is very different from the goal of this
paper.

Liu(2009) [12] attempted to check whether the
preference distribution changes if the number of political
experts in a communication network increases. They
use an agent-based model for simulation. In this model,
the agent maintains a binary value toward a candidate
(instead of a real value or ranking) and simply propagate
such values to the other agents in the nearby 3 by 3
matrix. Yoo et al. (2009) [19] proposed semi-supervised
importance propagation model. Their idea is to some



Table 1: Notations
Notation Description

V individuals
C candidates
n number of individuals
k number of candidates
pv preference profile vector of individual v ∈ V
sv preference score vector for individual v ∈ V
S preference scoring matrix with size |V | × |C|
G social network layer

extent similar to our “fusion phase” by adding the
original score into the accumulated score obtained from
the neighbor. The difference between their model and
ours is that theirs deal with a single value instead of a
vector, and therefore do not perform the normalization
over candidate scores like we do.

sectionPreference Propagation Model n individual’s
preference could change gradually when communicating
with his or her acquaintances. To understand how such
communication can affect the individual decisions, we
propose a propagation model for preference in social
networks. The notations used in the residual article are
listed in Table 1.

2.1 Preference Propagation Model We first de-
fine a preference profile pv of an individual v, which is a
k-dimensional vector that represents v’s preference to-
ward k different candidates. The jth element in pv is
an integer in [1, k] indicating this individual’s preference
for candidate j (smaller numbers denote higher ranks).
To facilitate the operation of the preference profiles, we
translate pv into a score vector sv for all v using the
following equation:

sv[i] = (k − pv[i] + 1)/T, ∀i ∈ 1, 2, . . . , k

where T = k(k + 1)/2. This transformation can be
regarded as a normalization process as in sv not only
the preferred candidate receives higher score but also
the sum of all element equals to 1.

Using the score vector of each individual, we can
create an n by k matrix S = (sv1 , sv1 , . . . , svn)t denoted
as the preference matrix. Next, we would like to model
how the preference matrix of a given time stamp t,
S(t), changes after the propagation process starts. We
assume the edge directions in a network G reveal the
direction of influence.

The information propagates one iteration after an-
other in our model, and each iteration consists of three
phases: propagation, normalization, and fusion. In the
propagation phase, each node v synchronically propa-
gate the preference score vector sv to the neighboring
nodes. To describe such operation mathematically, we
define an n × n forward transition matrix F such that
the multiplication of F and S(t) represents the score of

each node obtained from all neighbors after this phase.
We denoted it as Sp(t). In details, F = (KA)t, where K
is a diagonal matrix with the inverse of degree of each
node in the diagonal, and A is the adjacency matrix of
G. Note that F is identical to the forwarding matrix of
a random walk algorithm. The only difference is that
F in a random walk algorithm is multiplied by a vector
instead of a matrix S.

In Sp, each row represents the neighbors’ accumu-
lated preference scores toward each candidate. However,
unlike S, the elements in each row of Sp do not add up
to one. To ensure every individual has equal influence
while casting votes, we normalize each row of Sp so its
elements add up to one. Therefore, in the second phase,
Sp is multiplied by a n× n diagonal normalization ma-
trix N , where each element in the diagonal of N is equal
to the sum of all elements in the corresponding row of
Sp. After the second phase, we will obtain a new scoring
matrix Sn(t) = NFS(t).

The major difference between our propagation
model and the diffusion models for electricity/heat (see
Section 2 for more detail) lies in the intrinsic difference
of the media that are propagated. Electricity or heat
flows from one place to another (that is, a flow from
node A to node B implies the material does not exist in
A anymore). Opinions, by contrast, do not vanish after
propagation (that is, A’s inclination towards a candi-
date does not disappear even after communicating his
or her opinions to B). Therefore we add a third phase
to include a fusion model that integrate a individual’s
own opinions S(t) with the opinion Sn(t) gathered from
its neighbors.

In the fusion phase, we introduce a parameter for
each individual: the susceptible ratio, a real number
ε ∈ [0, 1] that represents how easily a individual can be
affected by others. Given a susceptibility parameter for
each individual, we can then create a susceptible matrix
E, an n × n diagonal matrix with the ε value of each
individual in the diagonal. If E equals to the identity
matrix I, which would imply all individuals are equally
and highly susceptible to one another, then S(t + 1)
should be equivalent to its neighbors’ opinion Sn(t).
On the opposite side, if E equals to the zero matrix,
implying all individuals are impervious to one another,
then S(t + 1) should be identical to S(t). Thus, after
one iteration of propagation, the preference score matrix
can be represented as

S(t+1) = (I−E)S(t)+ENFS(t) = ((I−E)+ENF )S(t).

Note that we assume that E does not change over
time, and neither does F (which is only dependent
upon topology). Interestingly, at first glance one might
assume that N changes iteratively, it actually does not.
Because the sum of each column in F equals 1 and the
scores are always normalized for all candidates, it is not



hard to prove that

Nij =

{
(
∑n
j=1 Fi,j)

−1 when i = j
0 otherwise

which depends only on F . Therefore, we can write
S(t+1) as XS(t) where X is a time-independent matrix.
This becomes an important feature for the proof of
convergence in the next section.

Above concludes one iteration of propagation. In
the next iteration, S(t+1) becomes the initial preference
scores for the individuals and the same process can be
executed to obtain another round of propagation results
S(t+ 2). Below is the algorithm for our model.

Algorithm 1 Preference Propagation Model

R : iteration number; P : initial preference profiles
E : susceptible matrix; F : forwarding matrix
N : normalization matrix
S(0) = PreferenceToScore(P )
for t = 0 to R do
Sp(t) = FS(t)
Sn(t) = NSp(t)
S(t+ 1) = ES(t) + (I − E)Sn(t)

end for
return S(R)

2.2 Proof of Convergence and Consensus In
this section, we show the convergent property of our
proposed scheme. The score matrix becomes invariant
after a sufficient number of propagations. Moreover,
we show that given certain conditions all rows in the
converged score matrix are identical. In the other words,
a consensus within a community will eventually be
reached through information propagations in our model.

Let X denote the overall preference propagation
operation of all three phases explicitly laid down in the
previous section,

S(t+ 1) = XS(t) = [(I − E) + ENF ]S(t)

To provide intuition for the forthcoming deductions and
to borrow results of the properties of X from section
2.1, we start by pointing out the similarities as well
as differences between X and the PageRank matrix
G. First, the entity X acting on S(t), is actually a
matrix consisting of the vectors of probabilities instead
of a simple vector of probabilities. As a result, the
columns of X do not add up to 1 (only the rows do)
and therefore it is not a stochastic matrix. Furthermore,
a social personal relationship network is intrinsically
more localized compared to the World Wide Web,
and as such, the favorable positive definite property
enjoyed by G does not necessarily hold for S. That
said, these complexitie, while no doubt complicates the
theoretical treatment of our algorithm, are in fact a

natural manifestation of the increased richness of our
target of research in hand — social networks.

We start our deduction of the convergence of X
by enlisting the Perron-Frobenius theorem [14] which
states that an irreducible, acyclic matrix has a single
eigenvalue that is strictly larger than the others. Under
the assumption that the graph being induced by X ,
GX is strongly connected and that the weights matrix
E have entries smaller than one but not all zeros,
X is irreducible and acyclic, and thus applies to the
Perron-Frobenius theorem. We denote the dominant
real positive eigenvalue of X as r. Armed with this fact,
we are able to transform X into its Jordan canonical
form

X = P−1JXP, JX =

 JX1 0 . . .
0 JX2 . . .
...

...
. . .

 ,

by which the leading block JX1
is a 1×1 matrix [r], and

other JXi
s correspond to their strictly smaller eigenval-

ues λXi
. Since by the rules of matrix multiplication, the

effect of X on S(t) can be analyzed one by one with re-
spect to S(t)’s column vectors without loss of generality,
we will proceed on with our proof of S(t)’s convergence
by concentrating on S(t)’s column vectors which we de-
note by lower case s(t). Decomposing s(0) into the sum
of X ’s eigenvectors, c1v1 + c2v2 + . . ., we obtain the
general form of the time evolution of s(t),

s(t) = J t
X (c1v1 + c2v2 + . . .) = rt(c1v1 + bt),

where

||bt|| = 1
rt
||JtX2

c2v2 + . . . ||
≤

∑|V |
i=2

(
|λxi|
r

)t
||civi|| → 0, as t→∞

The above shows that ||bt|| converges to zero when t is
large, and therefore S(t) converges to rt(c1v1). To get
an intuition for the speed of this convergence, we turn to
a special case where the susceptible ratios are identical,
that is E is a scalar ε. In this case, we apply the Perron-
Frobenius theorem again on NF , and we again obtain
NF ’s Jordan form

NF = P−1JNFP, JNF =

 JNF1 0 . . .
0 JNF2 . . .
...

...
. . .

 .

However, note that since it needs not be acyclic, be
strictly larger than the other. Now, using this basis we
find that X equals to

ε



. . .
. . . 0

(1−ε+ελNFi
)

ε
1

(1−ε+ελNFi
)

ε
1

(1−ε+ελNFi
)

ε

. . .

0
. . .





Figure 1: Nodes A, B form an opinion leader SCC, while
node C by itself is another opinion leader SCC. Nodes
E and D form an opinion follower SCC.

Since a Jordan canonical form is unique, we obtain
λXi

= (1 − ε + ελNFi
)/ε. From this result, we confirm

that when ε = 0, X degenerates to the trivial diagonal
case; and that as ε approaches 1, the rate of convergence
is geometrically proportional to ε/r.

We are now one step away from the final proof of S’s
convergence. Recalling that s(t) → rtc1v1, once r ≤ 1
is established, S(t) converges. To prove this, we take
advantage of the Collatz-Wielandt theorem which gives
the following formula for r: r = maxx∈N f(x), where

f(x) = min1≤i≤n;xi 6=0
[Xx]
xi

, and N = {x|x ≥ 0 with x 6=
0}.

We begin by asserting that the upper bound of
f(x) is 1. To prove this, we suppose the opposite
holds, that means there exists x such that f(x) =

min1≤i≤n;xi 6=0
[Xx]
xi

= α > 1. This implies the following
list of equations:

1 < α ≤ 1
x1

(X11x1 + X12x2 + . . .+ X1nxn)
...

1 < α ≤ 1
xn

(Xn1x1 + Xn2x2 + . . .+ Xnnxn)

Note that
∑n

j=1 Xij = 1,∀i. Thus, the above list of
equations can be arranged into

X12(x2
x1
− 1) + X13(x3

x1
− 1) + . . .+ X1n(xn

x1
− 1) > 0

...
Xn1( x1

xn
− 1) + Xn2( x2

xn
− 1) + . . .+ Xn(n−1)(

xn−1

xn
− 1) > 0

However, by denoting i as the subscript that has xi =
max
1≤j≤n

xj and remembering that X is a non-negative

matrix, one of the above equations would not hold.

Xi1(
x1
xi
− 1) + Xi1(

x2
xi
− 1) + . . .+ Xin(

xn
xi
− 1) > 0

This justifies the assertion that f(x) ≤ 1. Combin-
ing this result with the observation that the trivial
vector (1, 1, . . .) yields f(x) = 1, we conclude that
maxx∈N f(x) = 1. Therefore, r = 1, and S(t) converges
to c1v1.

For networks that are not strongly connected we
can always find the SCCs in linear time, and the
problem reduces to the smaller “source SCCs” of the
network since the matrices of all the other SCCs have a

Perron root smaller than 1 and their elements eventually
vanish. For the remaining source SCCs, since no vertices
has susceptibility ratios equals 1, according to the above
results they all converge. The net effect is exemplified by
the stark difference between the individuals belonging to
the various source SCCs and the rest. Whereas source
SCC vertices will converge to their own respective
common values, the others may converge to different
values and act as followers in terms of aligning their own
preferences to the weighted average of those belonging
to the sources. Figure 1 gives an example of such
phenomenon. Let the initial preference matrix of all
the nodes in Figure 1 be sA sB sC sD sE

s′A s′B s′C s′D s′E
s′′A s′′B s′′C s′′D s′′E

 candidate1
candidate2
candidate3

where each row in the preference matrix denotes each
node’s preference for candidate 1, 2, and 3 respectively.
Then after infinite number of propagations, the prefer-
ence matrix will become s(∞)AB s(∞)AB s(∞)C s(∞)D s(∞)E

s(∞)′AB s(∞)′AB s(∞)′C s(∞)′D s(∞)′E
s(∞)′′AB s(∞)′′AB s(∞)′′C s(∞)′′D s(∞)′′E


in which the preferences of nodes A and B in Figure 1
for candidate 1 converges to the common value s(∞)AB ;
for candidate 2 converges to the common value s(∞)′AB ;
and for candidate 3 converges to the common value
s(∞)′′AB . However, for nodes D and E, given that the
SCC composed by them {D,E} is under the influences
of both opinion leaders SCC {A,B} and {C}, their
eventual preferences instead of aligning themselves to
a common value becomes a linear combination of the
preferences of {A,B} and {C}. The exact details of this
combination depend on the structure of the network.

The preference propagation model simulates this
unique behavior of people by projecting the preferences
vector onto the leading uniform eigenvector denoting
equilibrium. In addition, it also attempts to mimic the
real world by distinguishing the opinion leaders from
the followers. As with its real world counterpart, this
process is solely determined by the initial preferences
of every individual and the structure of the embedding
social network.

Another example is shown in Figure 2, time evolu-
tion of preferences held by nodes in a social network,
demonstrating the effects of opinion leaders creating
their own consensus and passing it down to opinion fol-
lowers in a cascading manner. We see that the opinion
follower SCC composed by nodes 15 to 20 are colored
with various shades of gray depending on their distance
to the two opinion leader SCCs composed by nodes 1 to
3 and 4 to 7. We also observe that the preference of the
opinion leader SCC 1 to 3 is first passed to the opinion



(a) round 0 (b) round 2 (c) round 10 (d) round 29

Figure 2: Time evolution of preferences held by nodes in a social network, demonstrating the effects of opinion
leaders creating their own consensus and passing it down to opinion followers in a cascading manner.

follower SCC 8 to 11 (in propagation round 10), and
then subsequently passed to the opinion follower SCC
12 to 14 through the efforts of the SCC 8 to 11 in a
cascaded manner.

This simple example demonstrates that the
strongly-connection source components form the opin-
ion leader groups, while each follower node is affected by
(i.e. linear combination) the opinions of its surround-
ing opinion leader groups. Our framework models the
real-world observation about how each less-convinced
personnel being affected by the mass opinions he or she
encountered.

2.3 Comparison with other models We here dis-
cuss what are the most salient characteristics of a suc-
cessful social model based on common observations and
beliefs, in an attempt to contrast the most distinguish-
ing features of our model with the other previously pro-
posed frameworks.

Hyper Dimension Media. Since a personal pref-
erence describes the order of preference of all possible
candidates, the media in an ideal model should be rep-
resented as ordered lists instead of a single value. Most
of the propagation models such as Linear Threshold
Model, Cascade Independent Model, or Diffusion Rank,
unfortunately, only handle binary or real value in prop-
agation.

Topology Dependent and Input Dependent.
The word-of-mouth is the main strategy for a person to
affect others. The real-world process of guiding friends
toward the adoption of self preference goes mutually and
simultaneously. To state such phenomenon, the out-
going persuasions of a person should ideally become a
combination of self-preference and the incoming prefer-
ences. An ideal model should both take into account of
network structure and initial personal preference. More-
over, we would like a model’s way of incorporating these
two factors to be as natural as possible, instead of rely-
ing on ad hoc stopping designs or simply restricting the
number of times nodes or individuals interact.

Deterministic Convergence. Of course an ideal
model should converge or end eventually, or else it would
be difficult for the modeler to interpret the results. As
far as we know, there are currently two kinds of designs
to achieve such a convergence. The first one, such as LT
model and IC model, attaches a binary status to each
node in a network to determine whether it is visited.
The inactive status means the node is not yet visited
while the active status means the node is visited. With
such design, preference propagation to inactive nodes
can be easily monitored. Moreover, the propagation
converges in such model when none of the existing node
can change the status anymore.

Following the success of the PageRank algorithm,
the second popular approach is building the convergence
mechanism into a model inherently, so that after suf-
ficient iterations the model converges and produces a
definite result.

To make results easily analyzable, convergent mod-
els that can generate repeatable results given both the
same initial preferences of nodes and network structure
are preferred.

Consensus. The problem of reaching a consensus
among agents has been studied since around 1970
[3, 17] with simulation models such as the voter model
[11]. Mossels et al. gave a theoretical prove that the
consensus could be reached with the voter model. Thus
an ideal model should be able to reflect specific common
traits. In particular, we observe that one such universal
trait is people in the same community (i.e. SCC) have
the tendency to align their preference after sufficient
exchanges. This translates into the fact that an ideal
model should contain some kind of homogeneity inside
a group.

To see how our model and other proposed frame-
works capture the above characteristics of real world so-
cial interactions, we conducted several experiments and
recorded their results in Table 2 below for ease of com-
parison. We particularly chose models that are most
representative in their own stance, namely the Linear
Threshold model, Independent Cascade model, PageR-



Table 2: Comparison of models on the abilities to capture characteristics of real world social networks interactions.
Convergence Repeatability of final state Consensus Input dependent Media space

Proposed Model X X X(if SCC) X Rk

LT Model X X X boolean
IC Model X X boolean
PageRank X X R

DiffusionRank X X X R

ank model, and DiffusionRank model for comparison.
Note that since the propagating media in these models
are not a vector of preference, we made the following
enhancements for each of them to handle such cases.
For the LT and IC models, we assume that each ver-
tex initially held approval for its top k preferred can-
didates (non approval for the others), and thus for ev-
ery candidate, we get a list of seeds as input into the
LT and IC models. We then ran the model separately
on each candidate, garner their results, and normalize
them to form the final preference of each vertex. For the
PageRank and DiffusionRank models, given that they
can take real values as inputs, we simply executed these
models separately for each candidate in the preference
list, and then integrate the results to be a vector of real
numbers. Lastly, as shown in Table 2, we see that our
model is the only model that operates directly on a list
of preference, whereas other models work restrictively
on single boolean or real values, and have to be exe-
cuted separately to obtain a joint preference, which fail
to consider the correlation of the preference score among
candidates.

To see whether these models both converge and pro-
duce repeatable results, for each model we ran three
identical experiments with the same initial preferences
and network. We note that all models gave convergent
results. Besides, since the IC model carries a random
component, it does not deliver repeatable final prefer-
ence results.

To examine whether these models can give a kind of
consensus to nodes that belong to a strongly connected
network, we ran all models on a strongly connected
graph until they naturally stops or converges. It
turns out that except our model, none showed signs of
reaching consensus among the final output preferences.
Note that our model does not produce consensus given
non-SCC components.

To see whether these models take into account of
the initial preferences held by nodes, we fed all models
with six different initial preferences and see whether
they give six different results. It is not surprising that
the PageRank model returns identical results regardless
of the input, indicating that it takes into account of
only the structure of the network but ignoring the
initial preferences held by each node or individual.
In conclusion, our model is the only framework that
supports all five criteria set by observations from real

world social networks.

3 Experiment

To evaluate the performance, we compare our models
with some well-known diffusion models such as Linear
Threshold, Independent Cascade, and DiffusionRank in
the experiment. Ideally, we will examine whether all
the mentioned algorithms including ours can capture
the preference transition in social networks to a certain
extent. Conducting such validation, some information
is vitally required such as the network structure, and
the preference for nodes over time.

3.1 Preference Data In scientific research papers,
citations implicitly reveal the research interests of au-
thors. In other words, we believe that the acts such
as citing or submitting to the journals or the confer-
ences would reveal the authors’ interests. By utilizing
this fact, we can infer the researchers’ preference from
their corresponding top frequently-cited conferences and
journals. Thus, it is possible to express the research in-
terests as the preference on conferences and journals.
Furthermore, we have realized that the collaborations
with others, one may gradually change his own prefer-
ence. It is particularly correct for advisor-student rela-
tionship since the advisors and students usually affect
each others’ research interests and directions. We have
designed an experiment to model how researchers’ pref-
erences can be affected by the collaborators in social
network.

We use KDD Cup 2003 ArXiv HEP-TH (High En-
ergy Physics - Theory) citation network [4] with the
corresponding paper meta information as our evalua-
tion dataset. This citation dataset spreads over 12 years
from 1992 to 2003. We choose the top 16 journals that
possess most papers as the candidates to construct the
preference lists. We construct the yearly preference lists
based on the citation count of the corresponding jour-
nals within a year in our case. Note that we prefer
using the citations rather than the publications of au-
thors because the publications imply not only preference
but also capability. To fairly present the interests, we
use the citations. In addition, we construct a collabora-
tive network from this dataset as the underlying social
preference diffusion backbone. To easily perceive the
changes in interests, we remove the authors who had
fewer than 5 publications in the dataset, which results



in a network with 2683 nodes.

3.2 Model Comparison Since we already have all
the required information including network structure
and preference transition, the next step is to study
which diffusion model predicts the preference transition
better. We assume a good diffusion model could capture
the progression the authors’ research interests through
collaborations. To do so, we initially set up the node
preference according to the actual data in year x, and
then compare the predicting results with the actual
preference in year x + k. Following issues are noted
in the experiment:

Hyper Dimension Media. To represent the order
in preference toward all candidates, the media in an
ideal model ought to be an ordered list instead of a
single value. Nonetheless, most well-known diffusion
models such as LT, IC, and DiffusionRank, only treat
the media as boolean or real number. For comparison,
we exploit these models in our problem by executing
them independently for each candidate. We evaluate
the candidate rank based on each independent diffusion
result.

Determinism of the Final State. Except the
IC model, outcome of all the models mentioned above
is deterministic. Because the parameter called diffusion
probability in IC model is a nondeterministic factor, we
execute the experiment 20 times and average the results.

Initialization. Because the media in LT and IC
model are not native for hyper dimension, we singly
process the propagation for each candidate. That
means, in our experiment, the active mode of top 1%
authors to a specific publisher are initially set active
in LT and IC models while the rest publishers are set
inactive. We further set the diffusion probability of each
edge as 1

N , where N is the degree of its source node in
IC model. In LT model, we assign links with identical
weight, and nodes with same threshold. The parameters
in LT and IC are then tuned to find the optimal
outcome. The propagation process is executed multiple
times with different thresholds and the performance
are averaged. For DiffusionRank model, we use the
parameter settings suggested by the authors of [18].

3.3 Experiment Result Diffusion models are eval-
uated by comparing their predictions about preference
in 1997, 1998, and 1999 while using the real preference
during the period since 1993 to 1996 as initial status.
To measure the similarity between predicting and real
results, we adopt the Kendall’s tau coefficient [9] and
the Jaccard coefficient. We individually measure the
similarity for each author, each node in the network,
and then average them as a performance indicator. Be-
cause Kendall’s tau coefficient is not well-defined with
tie scores, we manually set Kendall’s tau score as 0 when
there is a tie on all 16 publishers. Furthermore, we cal-

Kendall’s Tau Top 3 Jaccard
year 1997 1998 1999 1997 1998 1999
IC 0.007 0.012 0.015 0.011 0.014 0.015
LT 0.172 0.167 0.167 0.171 0.195 0.212
DiffusionRank 0.221 0.181 0.160 0.216 0.222 0.213
proposed(0.00) 0.240 0.204 0.178 0.242 0.243 0.225
proposed(0.25) 0.243 0.206 0.180 0.248 0.244 0.226
proposed(0.50) 0.243 0.206 0.180 0.247 0.243 0.227
proposed(0.75) 0.243 0.206 0.180 0.246 0.243 0.226
proposed(1.00) 0.230 0.190 0.163 0.204 0.179 0.156

Table 3: Compare the result after one round for each
model with the ground-truth of year 1997, 1998, and
1999.

culate the Jaccard coefficient performs on top 3 highest
scored publishers.

Firstly, for the sake of knowing the correspondence
between the extent of changes in iterations and in years,
we execute one-iteration propagation in each model,
and then compare the results with the ground truth in
1997, 1998, and 1999 respectively. We also try different
susceptible ratio ε in our model, as ε = 1.0 implies
the authors stick to their own preferences without
considering the effect from the neighbors. Table 3 shows
the results, we find that it is quiet suitable to take one
iteration as a period of a year. The results demonstrate
that our model consistently outperforms the 2nd best
model DiffusionRank, regardless which susceptible ratio
is using as long as it is not 1.0.

Secondly, we execute the diffusion algorithms for
multiple rounds, and compare it with the ground truth
of year 1997-1999. Table 4 shows the average of the
scores for 1997, 1998, and 1999. Note that LT and
IC model stop when there is no possible activation
(regarded as one round), which implies that authors
are not affected by their neighbors after the first round
completes. Table 3 and 4 additionally show that the
impervious preferences (ε = 0) reach a performance
similar to the best result, which might reveal the slowly
changing nature. Nevertheless, the results show that
our model can faithfully capture the trait of the social
influence even the authors’ interests change slowly.

4 Conclusion

Analysing the effect of social networks upon group deci-
sions outcomes is a difficult problem because it is both
costly and time consuming to perform user studies to
collect people’s private preferences. Indeed, it is the
change of preferences through social propagation in par-
ticular that we care most about, and to our knowledge
this is the first ever study that provides not only theoret-
ical analysis but the empirical justification of this prob-
lem. This study provides an example of how to perform
such research with limited data through exploiting al-



Kendall’s Tau Top 3 Jaccard
round 1 2 3 4 5 1 2 3 4 5
Independent Cascade 0.011 0.011 0.011 0.011 0.011 0.013 0.013 0.013 0.013 0.013
Linear Threshold 0.168 0.168 0.168 0.168 0.168 0.192 0.192 0.192 0.192 0.192
DiffusionRank 0.186 0.186 0.186 0.186 0.186 0.217 0.217 0.217 0.217 0.217
proposed(0.00) 0.208 0.209 0.207 0.206 0.205 0.238 0.240 0.237 0.236 0.234
proposed(0.25) 0.210 0.209 0.208 0.207 0.207 0.241 0.241 0.240 0.239 0.238
proposed(0.50) 0.209 0.210 0.209 0.209 0.208 0.240 0.242 0.242 0.241 0.240
proposed(0.75) 0.209 0.209 0.209 0.209 0.209 0.239 0.241 0.242 0.242 0.241
proposed(1.00) 0.194 0.194 0.194 0.194 0.194 0.179 0.179 0.179 0.179 0.179

Table 4: Consider the result after k × R rounds for each model, and compare it with the ground-truth of year
1996 + k. The table shows the average of the similarity scores for 1997, 1998, and 1999.

gorithm and model design, theoretical justification, and
computer simulation.

Another significant contribution of our work is that
we provide an alternative evaluation plan and data to
verify a preference propagation model. Acknowledging
the lack of real-world data to evaluate how the voter’s
preference can change through social diffusion, we have
come up with a novel idea to identify a publicly avail-
able bibliography dataset to evaluate how researchers
gradually change their research fields according to the
influence of their collaborators. Our evaluation plan
opens a new possibility that allows researchers working
on preference diffusion problems to be able to evaluate
their models without having to identify a highly private
voter preference dataset.
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